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ABSTRACT

We present a scalable algorithm to construct a polytopic
underapproximation of the terminal hitting time stochastic
reach-avoid set, for the verification of high-dimensional sto-
chastic LTI systems with arbitrary stochastic disturbance.
We prove the existence of a polytopic underapproximation
by characterizing the sufficient conditions under which the
stochastic reach-avoid set and the proposed open-loop under-
approximation are compact and convex. We construct the
polytopic underapproximation by formulating and solving a
series of convex optimization problems. These set-theoretic
properties also characterize circumstances under which the
stochastic reach-avoid problem admits a bang-bang optimal
Markov policy. We demonstrate the scalability of our algo-
rithm on a 40D chain of integrators, the highest dimensional
example demonstrated to date for stochastic reach-avoid prob-
lems, and compare its performance with existing approaches
on a spacecraft rendezvous and docking problem.
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1 INTRODUCTION

Reachability analysis of discrete-time stochastic dynamical
systems is an established verification tool that provides prob-
abilistic guarantees of safety or performance, and has been
applied a wide range of applications [1–6]. In [1], two classes
of problems characterize verification over a finite horizon —
first hitting time and terminal hitting time – and dynamic
programming approaches are formulated to solve both (simi-
larly to [7, 8]). We focus on the finite time horizon terminal
hitting time stochastic reach-avoid problem (referred to here
as the terminal time problem for convenience), that is, com-
puting the maximum probability of hitting a target set at
the terminal time, while avoiding an unsafe set during all the
preceding time steps using a state-feedback policy. Specifi-
cally, we analyze the convexity and compactness properties
of the corresponding stochastic reach-avoid set, the set of
initial states where its optimal terminal time (reach-avoid)
probability is greater than a given threshold. We use these
properties to construct scalable polytopic representations.
These properties also determine the sufficient conditions for
admittance of a bang-bang optimal control.

The dynamic programming-based discretization approach
(DPBDA), proposed in [8], approximately computes value
functions for the terminal time problem via gridding, and
hence suffers from the well-known curse of dimensionality.
Attempts to circumvent this problem, via approximate dy-
namic programming [9, 10], Gaussian mixtures [9], particle
filters [5, 10], convex chance-constrained optimization [5], and
semi-definite programming [11] have been applied to systems
that are at most 10-dimensional – far beyond the scope of
what is possible with DPBDA, but not scalable to larger
problems. Recently, a scalable Fourier transform-based un-
derapproximation of the stochastic reach-avoid problem was
proposed for stochastic linear systems with Gaussian pertur-
bations, and demonstrated on a 40-dimensional system [12].
This method focused on underapproximating the stochastic
reach-avoid probability when starting from a known initial
condition. In this paper, we build on the method [12] to
compute a polytopic underapproximation of the stochastic

https://doi.org/10.1145/3178126.3178148
https://doi.org/10.1145/3178126.3178148


HSCC ’18, April 11–13, 2018, Porto, Portugal Abraham P. Vinod and Meeko M. K. Oishi

reach-avoid set. Using the proposed method, we compute
the underapproximation of the stochastic reach-avoid set for
a 40-dimensional system, which to our best knowledge, is
the largest system that has been verified via the stochastic
reach-avoid formulation.

We first characterize sufficient conditions for closedness,
compactness, and convexity of stochastic reach-avoid sets
and the open-loop underapproximation [12]. We then propose
a scalable algorithm to construct a tight polytopic under-
approximation of the latter. Our approach does not require
gridding of state, input, or disturbance spaces, and has low
memory requirements. We compare our approach with the
underapproximation technique proposed using Lagrangian
methods in [6] and the convex chance-constrained optimiza-
tion technique in [5]. Using the convexity results, we also show
that the stochastic avoid problem, computing the minimum
probability of hitting a target set at the terminal time irre-
spective of control, admits a bang-bang solution, potentially
enabling more efficient computation strategies.

Our main contributions are as follows: 1) sufficient condi-
tions for the closedness, compactness, and convexity of the
stochastic reach-avoid set and the underapproximation in [12],
2) a scalable algorithm for the computation of a polytopic
underapproximation of the stochastic reach-avoid set, and
3) the sufficient conditions for the admittance of bang-bang
optimal policy in stochastic reach-avoid problems.

In Section 2, we describe the terminal time problem, its
open-loop approximation, and relevant properties from prob-
ability theory and real analysis. Section 3 presents sufficient
conditions for compactness, closedness, and convexity, and
discusses how they provide sufficient conditions for bang-
bang controllers in stochastic reach-avoid problems. Section 4
presents a scalable algorithm for the computation of the
polytopic underapproximation, and we discuss our recom-
mendations for computational complexity, implementation,
and the synthesis of probabilistically safe open-loop con-
trollers. We demonstrate the proposed algorithm on several
numerical examples in Section 5. We conclude and provide
directions for future work in Section 6.

2 PRELIMINARIES AND PROBLEM
FORMULATION

We denote the Borel σ-algebra by B(·), a discrete-time time
interval which inclusively enumerates all integers in between
a and b for a, b ∈ N and a ≤ b by N[a,b], random vectors
with bold case, and non-random vectors with an overline.
The indicator function of a non-empty set E is denoted by
1E(y), such that 1E(y) = 1 if y ∈ E and is zero otherwise.
We denote the p-dimensional identity matrix by Ip, and the
matrix with all entries as x ∈ R by xp×q ∈ Rp×q. We denote
the affine and convex hull of a set E by affineHull(E) and
convexHull(E) respectively.

2.1 Real analysis

The relative interior of a set E ⊆ Rn is defined as

relint(E) = {x ∈ Rn : ∃r > 0,Ball(x, r) ∩ affineHull(E) ⊆ E}

where Ball(x, r) denotes a ball in Rn centered at x and of
radius r with respect to any Euclidean norm [13, Sec. 2.1.3].
The relative boundary is ∂E = closure(E) \ relint(E). From
the Heine-Borel theorem [14, Thm 12.5.7], we know that E
is compact if and only if it is closed and bounded.

A point x ∈ E is an extreme point of the set E if and
only if the only way to express x as a convex combination
(1 − θ)y + θz, such that y ∈ E , z ∈ E , and 0 < θ < 1, is by
taking y = z = x [15, Sec. 18]. Given Eextreme as the set of
all the extreme points of a compact and convex set E , we
have convexHull(∂E) = convexHull(Eextreme) = E [15, Thm.
18.4, Corr. 18.5.1]. For a compact E , Eextreme ⊆ ∂E [15, Corr.
19.1.1]. Depending on E , the set Eextreme could be countable,
for e.g. vertices of a polytope, or uncountable, for e.g. the
boundary of an ellipsoid.

A function f : Rn → R is upper semi-continuous (u.s.c.) if
its superlevel sets {x ∈ Rn : f(x) ≥ α} for some α ∈ R are
closed [16, Defs. 2.3 and 2.8]. A function f : Rn → R is log-

concave if f(x) ≥ 0 for all x and log f is concave with log 0 ≜
−∞ [13, Sec. 3.5.1]. Many standard distributions are log-
concave, for example, Gaussian, uniform, and exponential [13,
Eg. 3.40]. From these definitions, we also see that the indicator
function of a closed set is u.s.c., and the indicator function of
a convex set is log-concave (See [13, Eg. 3.1 and Sec. 3.1.7]).

2.2 Probability theory

A random vector y is a measurable transformation defined
in the probability space (Ω,Y ,P) with sample space Ω, σ-
algebra Y , and probability measure P over Y . We consider
Borel-measurable random vectors, y : Rp → Rp with Ω = Rp

and Y = σ(y) = B(Rp). For N ∈ N, a random process is

a sequence of random vectors {yk}
N
k=0 where the random

vectors yk are defined in the probability space (Ω,Y ,P).
The random vector Y = [y0 y1 . . . yN ]⊤ is defined in the
probability space (ΩN+1, σ(×N

k=0 Yk),PY ), with PY induced
from P. See [17, 18] for details.

2.3 Terminal stochastic reach-avoid
analysis

Consider the discrete-time stochastic LTI system,

xk+1 = Axk +Buk +wk (1)

with state xk ∈ X = Rn, input uk ∈ U ⊆ Rm, disturbance
wk ∈ W ⊆ Rn, and matrices A,B assumed to be of ap-
propriate dimensions. We assume that U is compact, wk

is absolutely continuous with a known probability density
function (PDF) ψw, and the random process w[·] is indepen-
dent and identically distributed (IID). Let N be a finite time
horizon. For any given sequence of (non-random) inputs u[·]
and an initial condition x0 ∈ X , the state xk is a random
vector for all k ∈ N[1,N ] via (1).
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The system (1) can be equivalently described by a Markov
control process with stochastic kernel that is a Borel-measurable
function Q : B(X )× X × U → [0, 1], which assigns to each
x ∈ X and u ∈ U , a probability measure on the Borel space
(X ,B(X )). For (1),

Q(dy|x, u) = ψw(y −Ax−Bu)dy. (2)

We define a Markov policy π = (µ0, µ1, . . . , µN−1) ∈ M
as a sequence of universally measurable maps µ[·] : X →
U . The random vector X = [x⊤

1 x⊤
2 . . . x⊤

N ]⊤, defined

in (XN ,B(XN ),Px0,π
X ) [1], has probability measure Px0,π

X

defined using Q [19, Prop. 7.45].
Let S, T ∈ B(X ). Define the terminal time probability,

r̂πx0
(S, T ), for known x0 and π, as the probability that the

execution with policy π is inside the target set T at time N
and stays within the safe set S for all time up to N . From [1],

r̂πx0
(S, T ) = Px0,π

X

{
xN ∈ T ∧ xk ∈ S ∀k ∈ N[0,N−1]

}
. (3)

From [1, Def. 10], a Markov policy π∗ is a maximal reach-
avoid policy in the terminal sense if and only if it is the
optimal solution of the problem

r̂π
∗

x0
(S, T ) = sup

π∈M
r̂πx0

(S, T ). (4)

The solution of (4) is characterized via dynamic program-

ming [1, Thm. 11]. Define V̂ ∗
k : X → [0, 1], k ∈ N[0,N ], by the

backward recursion for x ∈ X ,

V̂ ∗
N (x) = 1T (x) (5a)

V̂ ∗
k (x) = sup

u∈U
1S(x)

∫
X
V̂ ∗
k+1(y)Q(dy|x, u). (5b)

Then, the optimal value of (4) is r̂π
∗

x0
(S, T ) = V̂ ∗

0 (x0) for
every x0 ∈ X . A sufficient condition for the existence of
an optimal Markov policy was first given in [1, Thm. 11].
Lemma 1 provides another (stricter) sufficient condition that
is relatively easier to ensure.
Lemma 1. [12, Thm. 1] If U is compact, X , S, and T are
Borel, and Q(·|x̄, ū) is continuous, then an optimal Markov
policy π∗ exists to solve (4).
Lemma 2. [8, Thm. 2] If S, U , and T are compact and

Q(·|x̄, ū) is Lipschitz, then V̂ ∗
k (·) is Lipschitz over S for

k ∈ Z[0,N−1].

While Lemma 2 allows for the implementation of (5) by
discretizing X ,U , and W [1], this approach suffers from the
curse of dimensionality.

For α ∈ [0, 1], we define the stochastic reach-avoid set

Lπ∗
(α,S, T ) as the set of states which satisfy the terminal

hitting time stochastic reach-avoid objective with a proba-
bility greater than or equal to α under the optimal Markov

policy π∗. Formally, Lπ∗
(α,S, T ) is the α-super level set of

r̂π
∗

x0
(S, T ),

Lπ∗
(α,S, T ) = {x0 ∈ X : r̂π

∗
x0

(S, T ) ≥ α}. (6)

2.4 Open-loop underapproximation

In [5, 12], the authors proposed an underapproximation to
the stochastic reach-avoid problem by restricting the search
for the optimal control policy to open-loop control policies.
An open-loop policy ρ : X → UN provides an open-loop

sequence of inputs ρ(x0) = [ū⊤
0 ū⊤

1 . . . ū⊤
N−1]

⊤
for every

initial condition x0. Then the random vector describing the
extended state X, under the action of ρ(x0), lies in the

probability space (XN ,B(XN ),Px0,ρ
X ), with Px0,ρ

X defined
using Q [19, Prop. 7.45].

Similarly to the value function V̂ ∗
0 (·), we define Ŵ ∗

0 (x0) :
X → [0, 1] as the maximum terminal time reach-avoid prob-
ability attained by evolving (1) from y, when restricted to
open-loop controllers. Denoting the optimal open-loop con-

troller as ρ∗, we define Ŵ ∗
0 (x0) for every x0 ∈ X through the

following optimization problem defined using Px0,ρ
X ,

Ŵ ∗
0 (x0) ≜ r̂ρ

∗

x0
(S, T ) = sup

ρ(x0)∈UN

r̂ρx0
(S, T ), (7)

r̂ρx0
(S, T ) ≜ Px0,ρ

X

{
xN ∈ T ∧ xk ∈ S ∀k ∈ N[0,N−1]

}
. (8)

The probability measure Px0,ρ
X is linked to the forward sto-

chastic reach probability measure [2] and can be computed
for arbitrary disturbances using Fourier transforms [12]. The
difference between (3) and (8) is the input policy considered.
Equation (8) can also be expressed as

r̂ρx̄0
(S, T ) =

∫
SN−1×T

ψX(X̄; x̄0, ρ)dX̄ (9)

where X̄ = [x̄⊤1 x̄⊤2 . . . x̄⊤N ]
⊤ ∈ XN , x̄k ∈ X ∀k ∈ N[1,N ],

dX̄ is short for dx̄1dx̄2 . . . dx̄N , and ψX(·; x̄0, ρ) is the PDF

induced from Px0,ρ
X . From (9), r̂ρx0

(S, T ) is a nN -dimensional

integral over the set SN−1×T ⊆ XN of the joint PDF of the
extended state X. Similarly to (6), we define the α-superlevel

set of r̂ρ
∗

x0
(S, T ) as Kρ∗(α,S, T ),

Kρ∗(α,S, T ) = {x0 ∈ X : r̂ρ
∗

x0
(S, T ) ≥ α}. (10)

The set Kρ∗(α,S, T ) is an underapproximation of the sto-
chastic reach-avoid set since (7) underapproximates (4) [12,
Thm. 2]. Consequently, we have Lemma 3.

Lemma 3. Kρ∗(α,S, T ) ⊆ Lπ∗
(α,S, T ) for all α ∈ [0, 1].

For a Gaussian w and polytopic S and T , the objective
r̂ρx0

(S, T ) is the integration of a Gaussian random vector
over a polytope. We have closed-form expressions for ψX

using Fourier transforms. Capitalizing on the log-concavity of
(7) [12, Prop. 2], existing scalable algorithms to compute the
integration of multivariate Gaussian distributions over poly-
topes [20], and Lemma 3, an underapproximative method was
proposed in [12] to verify high-dimensional stochastic linear
systems with affine Gaussian disturbance. While restricting
the search for optimal policies to only open-loop controllers in
(7) does introduce conservativeness as described in Lemma 3,
we will demonstrate in this paper that the computational
effort, especially the memory requirements, for computing

a tight underapproximation of Kρ∗(α,S, T ) is significantly

lower than Lπ∗
(α,S, T ).
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2.5 Problem statement

We use properties of the stochastic reach-avoid set

Lπ∗
(α,S, T ) and its open-loop underapproximation

Kρ∗(α,S, T ), as well as the resulting optimal policies, π∗

and ρ∗, to develop a scalable algorithm to compute a tight

polytopic underapproximation of Kρ∗(α,S, T ) and therefore

of Lπ∗
(α,S, T ).

Problem 1. Characterize the sufficient conditions under

which the stochastic reach-avoid set Lπ∗
(α,S, T ) and its open-

loop underapproximation Kρ∗(α,S, T ) are 1) compact and
convex, and 2) closed and convex.

Problem 1.a. Characterize the sufficient conditions for the
admittance of bang-bang control policies as the optimal control
policies π∗ and ρ∗ that solve (4) and (7) respectively.

Problem 2. Construct a scalable algorithm to compute a
tight polytopic underapproximation of the open-loop under-

approximation of the stochastic reach-avoid set Kρ∗(α,S, T )
(10).

3 COMPACTNESS AND CONVEXITY
OF STOCHASTIC REACH-AVOID
SETS

From [19, Defn. 7.12], [21, App. B], the stochastic kernel
Q(·|x̄, ū) is said to be continuous if for every sequence (x̄i, ūi)
i→∞−−−→ (x̄, ū) ∈ X × U and every bounded Borel-measurable
function f(·) over X ,

lim
i→∞

∫
X
f(ȳ)Q(dȳ|(x̄i, ūi)) =

∫
X
f(ȳ)Q(dȳ|(x̄, ū)).

Continuous ψw yield continuous Q(·|x, u) [12, Lem. 2]. Since
affine transformations preserve log-concavity [13, Sec. 3.2.2],
we have Lemma 4.

Lemma 4. If ψw is a log-concave PDF, then Q(·|x, u) de-
fined in (2) is log-concave over X × X × U .

To exploit the set-theoretic properties of Kρ∗(α,S, T ), we
use an alternative representation of (9) derived from the
Markov process description (1) and the stochastic kernel (2),

r̂ρx̄0
(S, T ) =

∫
SN−1×T

N−1∏
k=0

Q(x̄k+1; x̄k, ūk)dX̄. (11)

The proofs for Section 3.1 and 3.2 are in the appendix.

3.1 Sufficient conditions for compactness

Proposition 1. Lπ∗
(α,S, T ) ⊆ S for all α ∈ (0, 1] if S, T ⊆

X and N ≥ 1.

By Proposition 1, bounded S implies bounded Lπ∗
(α,S, T )

for α ∈ (0, 1]. Moreover, Lipschitz continuity implies u.s.c.,
and thereby, closedness of the superlevel sets. Therefore,
Lemma 2 provides sufficient conditions to guarantee com-

pact Lπ∗
(α,S, T ). However, we demonstrate compactness for

Lπ∗
(α,S, T ) under weaker requirements on T and Q(·|x, u).

Theorem 1. If U is compact, S and T are closed, and

Q(·|x, u) is continuous, then 1) V̂ ∗
k (·) and Ŵ ∗

k (·) are u.s.c.

over S for k ∈ N[0,N−1], and 2) Lπ∗
(α,S, T ) and Kρ∗(α,S, T )

are closed for α ∈ (0, 1].

The sufficient conditions in Theorem 1 also satisfy the
requirements from Lemma 1 for the existence of an optimal
Markov policy.

Theorem 2. If U and S are compact, T is closed, Q(·|x, u) is
continuous, and N ≥ 1, then Lπ∗

(α,S, T ) and Kρ∗(α,S, T )
are compact for α ∈ (0, 1].

Unlike Lemma 2, Theorem 2 guarantees that Lπ∗
(α,S, T )

is compact, even when T is unbounded (and therefore is not
compact), e.g., when the target set is specified as a half-space.
The boundedness of S is the only additional requirement in
Theorem 2, as compared to Theorem 1. We show that this
can not be weakened by a counterexample. Consider a two-
dimensional point mass system,[

xk+1

yk+1

]
=

[
xk
yk

]
+ u+w (12)

with the state [xk yk]
⊤ ∈ X = R2, input u ∈ [−1, 1]2, and a

stochastic disturbance w ∼ N (0̄2×1, I2). If S = X (closed but
unbounded) and T = [−1, 1]× R, then the line x = 0 (the y-

axis) is contained in Lπ∗
(α,S, T ) whenever Lπ∗

(α,S, T ) ̸= ∅.
This follows from the observation that the terminal time
problem is independent of the state yk. Since Lπ∗

(α,S, T ) is
not bounded, Lπ∗

(α,S, T ) is not compact.

3.2 Sufficient conditions for convexity

Proposition 2. If S and T are convex, and Q(·|x, u) is
log-concave, then r̂ρx0

(S, T ) is log-concave over X × UN .

Note that while closed sets (and therefore, compact sets)
are Borel-measurable, convex sets need not be Borel, e.g.,
the union of an open ball in Rn with any non-measurable
subset of its boundary. Hence, the sufficient conditions must
satisfy conditions for convexity as well as the requirements
in Lemma 1, to ensure the existence of an optimal Markov
control policy for (4).

Theorem 3. If U is compact and convex, S and T are Borel
and convex, and Q(·|x, u) is continuous and log-concave, then

1) V̂ ∗
k (·) and Ŵ ∗

k (·) are log-concave over X for k ∈ N[0,N ], and

2) Lπ∗
(α,S, T ) and Kρ∗(α,S, T ) are convex for α ∈ (0, 1].

We combine Theorems 1, 2, and 3 in Theorem 4, which
solves Problem 1.

Theorem 4. If U is compact and convex, S and T are closed
and convex, and Q(·|x̄, ū) is continuous and log-concave, then

Lπ∗
(α,S, T ) and Kρ∗(α,S, T ) are closed and convex for α ∈

(0, 1]. In addition, if S is bounded (making S compact) and

N ≥ 1, then Lπ∗
(α,S, T ) and Kρ∗(α,S, T ) are compact and

convex for α ∈ (0, 1].
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3.3 Existence of bang-bang optimal
control

We now address Problem 1.a. While it is established that
the differential game formulation of the reach-avoid problem
for uncertain systems leads to a bang-bang controller [22,
Prop. 1], no formal results similarly exist for the stochastic
reach-avoid problem. We use sufficient conditions for the
log-concavity of the value functions (Theorem 3) to charac-
terize the sufficient conditions for bang-bang optimal Markov
control policies in the stochastic reach-avoid problem.

Proposition 3. Let U be a polytope with a finite set of
vertices Uvertices ⊆ Rm, such that U = convexHull(Uvertices).
If T is convex and Borel, and Q(·|x, u) is continuous and
log-concave, then the stochastic reach-avoid problem (4), with
target set X \T and safe set as X , and its underapproximation
(7) admit bang-bang solutions, π∗

bang and ρ∗bang, respectively.

Proof: We first prove that (4) admits a bang-bang op-
timal Markov policy. Lemma 1 ensures the existence of a
Markov policy for (4) under the given conditions. From (3)
and (4), for a known x0 ∈ X ,

sup
π∈M

r̂πx0
(X ,X \ T ) = sup

π∈M
Px0,π
X {xN ∈ X \ T }

= sup
π∈M

(
1− Px0,π

X {xN ∈ T }
)

= 1− inf
π∈M

Px0,π
X {xN ∈ T }

= 1− inf
π∈M

r̂π(X , T ). (13)

To solve the optimization problem in (13), we formulate the

recursion of the value functions V̂ ∗
k,bang(·) for k ∈ N[0,N ] that

solve (13) (similarly to (5b)),

V̂ ∗
N,bang(x) = 1T (x) (14)

V̂ ∗
k,bang(x) = inf

u∈U

∫
X
V̂ ∗
k+1,bang(y)Q(dy|x, u). (15)

As in Theorem 3, we can show that V̂ ∗
k,bang(x) is log-concave

for k ∈ N[0,N ]. From [15, Thm. 32.2], we see that (15) admits
an optimal ū∗ ∈ Uvertices for π∗

bang to (13).
For the open-loop underapproximation (7), we use similar

arguments and Proposition 2 for ρ∗bang.
For the terminal time problem described in Proposition 3,

the admittance of bang-bang optimal control policies implies
that discretization of the input space for DPBDA that in-
cludes all the extreme points of U will not introduce any
approximation. Note that if instead of a polytopic U , we
had a generic compact and convex input set, then π∗

avoid

would still be bang-bang with the optimal inputs lying in the
corresponding (possibly uncountable) set of extreme points.

For the stochastic avoid problem in e.g., obstacle avoidance
scenarios [3, 4], a proof can be constructed similarly to that
in Proposition 3, to characterize sufficient conditions that
admit bang-bang optimal solutions.

4 POLYTOPIC
UNDERAPPROXIMATION OF
COMPACT, CONVEX Kρ∗(α,S, T )

Since the convex hull of the relative boundary points of a
compact and convex set is equal to the set itself, we can
obtain an arbitrarily tight polytopic underapproximation of

Kρ∗(α,S, T ) by using a finite subset of the relative boundary

points of Kρ∗(α,S, T ) as the vertices of the polytopic under-

approximation. We denote this polytope by Kρ∗(α,S, T ,D).
Note that when these vertices include all of the extreme points

of Kρ∗(α,S, T ) (possible for a polytopic Kρ∗(α,S, T )), we
have Kρ∗(α,S, T ,D) = Kρ∗(α,S, T ) [23, Thm. 2.6.16]. We

propose an algorithm to compute Kρ∗(α,S, T ,D) in three

steps: 1) check whether the set is Kρ∗(α,S, T ) is non-empty,
2) compute a finite subset of relative boundary points of

the set Kρ∗(α,S, T ), and 3) compute the convex hull of the

computed relative boundary points to obtain Kρ∗(α,S, T ,D).

4.1 Computation of Kρ∗(α,S, T ,D)

4.1.1 Checking if Kρ∗(α,S, T ) is non-empty. We first com-

pute a point guaranteed to lie in Kρ∗(α,S, T ). Recall that

Ŵ ∗
0 : X → [0, 1] is the optimal value function of (7), and it

maps initial states to an optimal reach-avoid probability that
can be attained using open-loop controllers. Let xmax ∈ X
be the initial condition that has the highest reach-avoid prob-
ability among all the initial states. For every α ∈ [0, 1], it

then follows from (10) that either xmax ∈ Kρ∗(α,S, T ) or

Kρ∗(α,S, T ) = ∅, as in Figure 1. We solve

maximize
x0,ρ(x0)

r̂ρx0
(S, T )

subject to


r̂ρx0

(S, T ) ≥ α

ρ(x0) ∈ UN

x0 ∈ X

(16)

to obtain xmax with the guarantee that Ŵ ∗
0 (xmax) ≥ α. In

contrast to (7), in which x0 is known, (16) treats r̂ρx0
(S, T )

as a function of both x0 and ρ(x0). By Proposition 2, (16) is

a log-concave optimization problem. Note that Kρ∗(α,S, T )
can be empty even if Lπ∗

(α,S, T ) is non-empty, by Lemma 3.

4.1.2 Computing a relative boundary point of Kρ∗(α,S, T ).
From here on, we assume Kρ∗(α,S, T ) ̸= ∅ for a given value
of α ∈ [0, 1], and xmax exists. We define g : [0,∞)→ [0, 1] to

evaluate Ŵ ∗
0 (·) along a vector d̄ ∈ X (see Figure 2),

g(θ;xmax, d̄, Ŵ
∗
0 ) = Ŵ ∗

0 (xmax + θd̄). (17)

For any θ ∈ [0,∞), we can compute (17) by solving (7) with
x0 = xmax+θd̄. Consider the following optimization problem,

maximize
θ

θ

subject to

{
g(θ;xmax, d̄, Ŵ

∗
0 )≥ α
θ ≥ 0

(18)

Let the optimal solution to (18) be θ∗.
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Figure 1: Feasibility of (16) guarantees non-empty

Kρ∗(α,S, T ). For 0 ≤ α2 < Ŵ ∗
0 (xmax) < α1 ≤ 1,

Kρ∗(α1,S, T ) = ∅ and Kρ∗(α2,S, T ) ̸= ∅.

Figure 2: Evaluation of Ŵ ∗
0 (x) along a line d̄ and the

optimization problem (18).

Proposition 4. For a compact and convex Kρ∗(α,S, T ), 1)
g(θ;xmax, d̄, Ŵ

∗
0 ) is a quasi-concave non-increasing function

in θ, and 2) xmax + θ∗d̄ is a relative boundary point with
θ∗ <∞.

Proof: From (10), Ŵ ∗
0 (·) is quasi-concave sinceKρ∗(α,S, T )

is convex. Further, restricting a quasi-concave function on Rn

to a line intersecting its domain is also quasi-concave [13, Sec.

3.4.2]. Hence, from (17), g(θ;xmax, d̄, Ŵ
∗
0 ) is a quasi-concave

function. Recall the quasi-concave functions over R are either
1) nondecreasing, 2) non-increasing, or 3) non-increasing
up to a point θ0 ∈ [0,∞) and then non-decreasing [13,
Sec. 3.4.2]. From (17) and definition of xmax, it follows that

g(θ;xmax, d̄, Ŵ
∗
0 ) is non-increasing in θ.

The feasible set of (18) is given by

Efeas = {θ ∈ R : θ ≥ 0, g(θ;xmax, d̄, Ŵ
∗
0 ) ≥ α}.

= {θ : θ ≥ 0} ∩ {θ : xmax + θd̄ ∈ Kρ∗(α,S, T )}.

Since Kρ∗(α,S, T ) is compact and convex, Efeas is a com-
pact and convex set. Hence, Efeas = [0, ϕ] for some ϕ ∈
[0,∞) and θ∗ ≤ ϕ. Further, we know that xmax + ϕd̄ ∈
∂Kρ∗(α,S, T ) since for every r > 0, there is some ν > 0 such

that Ball(xmax + ϕd̄, r) ∩ affineHull(Kρ∗(α,S, T )) contains a
relative interior point (xmax + (ϕ− ν)d̄) and a point outside

Kρ∗(α,S, T ) (xmax+(ϕ+ν)d̄). Finally, assume for contradic-
tion, ϕ ̸= θ∗. Then θ∗ < ϕ which contradicts the optimality
assumption of θ∗.

From Proposition 4, g(θ∗;xmax, d̄, Ŵ
∗
0 ) = α. Hence, for any

θ1, θ2 ∈ [0,∞) with θ1 < θ∗ < θ2, we have

g(θ1;xmax, d̄, Ŵ
∗
0 ) ≥ α ≥ g(θ2;xmax, d̄, Ŵ

∗
0 ). (19)

From Lemma 3 and Proposition 1, we see that θmax, defined
such that xmax + θmaxd̄ lies on the relative boundary of S,
bounds θ∗ from above. We solve (18) to a desired tolerance
ϵ > 0 using a bisection algorithm, and (19) on the interval
[0, θmax] (See [13, Algo. 4.1]). At every iteration, we solve (7)

for the given x0 = xmax + θd̄ to obtain ρ∗(x0) and Ŵ
∗
0 (x0).

4.1.3 Construction of the polytopic underapproximation.
We denote a given finite set of distinct direction vectors d̄i as
D, and let θ∗i for i ∈ N[1,|D|] denote the corresponding optimal

solution to (18). We define, Kρ∗(α,S, T ,D), the polytopic

underapproximation of Kρ∗(α,S, T ), in (20).
Algorithm 1 solves Problem 2.

Algorithm 1 Computation of Kρ∗(α,S, T ,D)
Input: Open-loop cost function r̂ρx0

(S, T ), input space U ,
set of direction vectors D, tolerance ϵ > 0

Output: Polytope Kρ∗(α,S, T ,D)
1: Solve (16) to compute xmax

2: if (16) is feasible then ▷ xmax exists
3: for d̄i ∈ D do
4: Compute θ∗i via bisection to solve (18)
5: end for
6: Compute Kρ∗(α,S, T ,D) using (20)
7: else
8: Kρ∗(α,S, T ,D)← ∅ by (20)
9: end if

4.2 Discussion

4.2.1 Time and memory complexity. The key reason for
Algorithm 1’s scalability to high-dimensional systems is that
its memory complexity is O(|D|), in contrast to the expo-
nential dependence of the memory requirement of DPBDA
on n due to gridding [8]. This drastic reduction is the direct
consequence of Algorithm 1’s ability to exploit the convexity
and compactness properties presented in Section 3.

We will characterize the time complexity in terms of the
number of evaluations of r̂ρx0

(S, T ) required, the most ex-
pensive computation operation in Algorithm 1. Denoting
γxmax and γline as upper bounds on the number of evalu-
ations of r̂ρx0

(S, T ) in (16) and (18) respectively, and tintg
as the computational time to evaluate r̂ρx0

(S, T ), we have
the worst-case computational complexity of Algorithm 1
as O (tintg (γxmax + γline|D|⌈log2(θmax)− log2(ϵ)⌉)). Clearly,
γxmax and γline depend on the optimization algorithm used,
the dimensions of the state space n, the input space m, and
the disturbance space p, the time horizon N , the tolerances
required, and other problem characteristics. In our experi-
ments, we found γxmax and γline to be around 300–800 for
the 2D system analyzed in Section 5.1.1. As expected, tintg
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Kρ∗(α,S, T ,D) =

{
convexHull({xmax + θ∗i d̄i : i ∈ N[1,|D|]}) xmax exists

∅ otherwise
. (20)

is heavily influenced by the problem, and in our experiments,
we found it in the range of 0.02–1 second.

4.2.2 Implementation of Algorithm 1. The choice of D influ-
ences the performance of Algorithm 1 significantly. Choosing
the vectors in D to be far apart improves the quality of un-
derapproximations (in terms of volume). Increasing |D| will
also yield better quality underapproximations, at the cost of
increased computational time.

The computation of r̂ρx0
(S, T ) requires a numerical inte-

gration of dimension nN . We use Genz’s algorithm [20, 24]
to evaluate r̂ρx0

(S, T ) for a Gaussian w. However, due to the
quasi-Monte Carlo simulations used in Genz’s algorithm, the
evaluation of r̂ρx0

(S, T ) will be noisy. We set the number of
particles to ensure an accuracy of 0.01 for every evaluation
of r̂ρx0

(S, T ). As in [12], direct optimization methods [25] are
recommended instead of traditional gradient-based methods.
Even when the objective function is known to be convex
(Theorem 3), gradient-based methods (such as MATLAB’s
fmincon) may converge to a suboptimal point due to the per-
turbations introduced by the noisy evaluation of r̂ρx0

(S, T ).
We use MATLAB’s patternsearch here. The trade-off for the
increased accuracy in the solution is the larger number of
function evaluations required by patternsearch as compared
to fmincon. However, the solutions will be sensitive to the
initial guesses to solve (7) and (16).

The most significant computational challenge in Algo-
rithm 1 stems from the noisy evaluation of r̂ρx0

(S, T ). While
our current implementation uses direct optimization methods,
which tend to be slower, stochastic optimization techniques
such as the stochastic branch-and-bound method, may im-
prove computational speed and accuracy. Algorithm 1 is
highly parallelizable since the computations along each of the
direction d̄i are independent. Additionally, γline and γxmax

may be reduced by storing the evaluations of r̂ρx0
(S, T ) in

memory.

4.2.3 Open-loop controller synthesis. Algorithm 1 provides
probabilistically safe open-loop controllers only for the ex-

treme points of Kρ∗(α,S, T ,D) as identified by D. By defini-

tion, any non-extreme point in Kρ∗(α,S, T ,D) can be written
as a convex combination of these extreme points. An easily
accessible open-loop controller for a non-extreme initial state
of interest is the corresponding convex combination of the
optimal open-loop controllers for the extreme states, simi-
larly to [26]. While the feasibility of this controller follows
easily from the convexity of the input space and the linearity
of the system, this controller, however, is not necessarily
optimal for the terminal time problem. We must solve (7)
at the given initial state of interest to identify the optimal
open-loop controller.

Figure 3: Stochastic reach-avoid sets (contours) and
their polytopic underapproximations for a double in-
tegrator with a target set [−0.5, 0.5]2.

n = 2 (Fig. 3) n = 40 (Fig. 4)

α ∈ (0, 1] 0.25 0.5 0.75 0.25 0.98

Algorithm 1 5.62 6.14 4.74 30.57 15.48

DPBDA 33.77 33.77 33.77 – –

Table 1: Computation times in minutes for the
chain of integrators for various α. The dy-
namic programming-based discretization approach
(DPBDA) cannot solve the 40D problem.

5 APPLICATIONS

All computations were performed using MATLAB on an
Intel Xeon CPU with 3.4GHz clock rate and 32 GB RAM.
The MATLAB code for this work is available at https://
github.com/unm-hscl/hscc2018. We used MPT3 [27] for the
polytopic constructions and plotting.

5.1 Chain of integrators

We consider a chain of n integrators with |D| = 6. See [12,
Sec. V-B] details on the dynamics and the numerical values.

5.1.1 2D system. Consider the terminal time problem with
safe set as S = [−1, 1]2 and the target set as T = [−0.5, 0.5]2.
We compare the set Kρ∗(α,S, T ) computed via Algorithm 1

and the stochastic reach-avoid set Lπ∗
(α,S, T ) obtained via

DPBDA. The grid spacing for the DPBDA was chosen to be
0.005, as in [12, Table II].

As shown in Figure 3, Algorithm 1 provides a very good
underapproximation of the true stochastic reach-avoid set,
particularly for low values of α. We believe that this is be-
cause the optimal closed-loop controller π∗ and the closed-
loop controller ρ∗ have the same values for the states along

https://github.com/unm-hscl/hscc2018
https://github.com/unm-hscl/hscc2018
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Figure 4: Slice of the polytopic underapproximation

Kρ∗(α,S, T ,D) for a 40D chain of integrators com-

puted via Algorithm 1 for a target set [−8, 8]40.

the boundary. The stochastic reach-avoid probability com-
puted via the open-loop control is lower because it does
not incorporate feedback [12, Thm. 2]. Note that the maxi-
mum values for V and W are 0.86 and 0.75, respectively,

and that Kρ∗(α,S, T ,D) = ∅ for α ∈ [0.76, 0.86], while

Lπ∗
(α,S, T ) ̸= ∅.

5.1.2 40D System. To demonstrate scalability, we com-

pute Kρ∗(α,S, T ,D) for n = 40, α ∈ {0.25, 0.98} (with

Ŵ ∗
0 (xmax) = 0.98), S = [−10, 10]40, Σw = I40, and T =

[−8, 8]40. Figure 4 shows a slice of Kρ∗(α,S, T ,D) that veri-
fies x0 of the form [x1 x2 0 . . . 0]⊤ ∈ R40. To the best of our
knowledge, this is the largest stochastic LTI system verified
to date through a stochastic reach-avoid formulation.

Computational times in Table 1 show that as expected, Al-
gorithm 1 scales well with dimension. Note that the approach
in [12] also handles a 40D system, but would require grid-
ding the state space to compute the stochastic reach-avoid
set, making the problem intractable. The grid-independent
approach of Algorithm 1 also allows it to analyze verifica-
tion problems involving large safe and target sets as seen in
Figure 4.

5.2 Spacecraft Rendezvous and Docking

We consider two spacecraft in the same elliptical orbit. One
spacecraft, referred to as the deputy, must approach and
dock with another spacecraft, referred to as the chief, while
remaining in a line-of-sight cone, in which accurate sensing
of the other vehicle is possible. The relative dynamics are
described by the Clohessy-Wiltshire-Hill (CWH) equations
[28] with additive stochastic noise.

ẍ− 3ωx− 2ωẏ = m−1
d Fx, ÿ + 2ωẋ = m−1

d Fy. (21)

The chief is located at the origin, the position of the deputy

is x, y ∈ R, ω =
√
µ/R3

0 is the orbital frequency, µ is the
gravitational constant, and R0 is the orbital radius of the
spacecraft. See [5, 6] for further details and numerical values.

We define the state as z = [x, y, ẋ, ẏ] ∈ R4 and input as
u = [Fx, Fy] ∈ U ⊆ R2. We discretize the dynamics (21) in

Method Algorithm 1
Chance Lagrangian

constrained [5] [6]

Figure 5 6.52 106.53 0.24

Figure 6 9.88 13.12 –

Table 2: Computation times of various methods in
minutes for the CWH dynamics.

Figure 5: Comparison of Algorithm 1 with the La-
grangian [6, Fig. 4] and the chance-constrained [5]
approaches for initial velocity ẋ = ẏ = 0 km/s.

Figure 6: Comparison of Algorithm 1 with the
chance-constrained approach [5, Fig. 2] for initial ve-
locity ẋ = ẏ = 0.01 km/s. The Lagrangian method
fails to provide a solution in this case.

time to obtain the discrete-time LTI system,

zk+1 = Azk +Buk + wk (22)

with wk ∈ R4 a Gaussian i.i.d. disturbance, with E[wk] = 0,
Σ = E[wkw

⊤
k ] = 10−4 × diag(1, 1, 5× 10−4, 5× 10−4).

We define the target set and the constraint set as in [5]

T =
{
z ∈ R4 : |z1| ≤ 0.1,−0.1 ≤ z2 ≤ 0,

|z3| ≤ 0.01, |z4| ≤ 0.01} (23)

K =
{
z ∈ R4 : |z1| ≤ z2, |z3| ≤ 0.05, |z4| ≤ 0.05

}
(24)

with a horizon of N = 5. We consider two verification prob-
lems: 1) with initial velocity ẋ = ẏ = 0 km/s and U =
[−0.1, 0.1]2 as in [6], and 2) with initial velocity ẋ = ẏ = 0.01
km/s and U = [−0.01, 0.01]2 as in [5].
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The safety problem can be posed as a terminal time prob-
lem which, while intractable for DPBDA, may be solved using
approximately using Algorithm 1, Lagrangian methods [6],
or the chance-constrained approach [5]. Figures 5 and 6 show
a slice of the stochastic reach-avoid underapproximations for
both the verification problems with |D| = 10 and α = 0.8.
The chance-constrained approach uses a grid over S in Fig-
ure 5 and over the visible portion in Figure 6. Computational
times are summarized in Table 2.

The Lagrangian method is significantly faster than Al-
gorithm 1 in this case, and since it provides closed-loop
controllers, the resulting underapproximation of the stochas-
tic reach-avoid set is larger in volume. However, because the
Lagrangian method suffers from the well known vertex-facet
enumeration problem, particularly for large time horizons or
small target or safe sets, it fails to solve an underapproxima-
tion for the initial velocities in Figure 6.

The chance-constrained approach results in a smaller un-
derapproximation than Algorithm 1. This is because it further
underapproximates the cost function r̂ρx0

(S, T ) using chance-
constraints. Additionally, since the chance-constrained ap-
proach relies on gridding for computing the stochastic reach-
avoid set, it does not scale well with dimension or the size of
the safe and target sets (see Table 2).

While Algorithm 1 has clear advantages in speed and scal-
ability, the implementation of line 4 (bisection algorithm) can
be problematic because of the noisy nature of the objective
function evaluation. In particular, the bisection algorithm
may terminate prematurely and hence not extend the poly-
topic underapproximation as far in the given direction as
it could go. This is apparent in Figures 5 and 6, where the
result via Algorithm 1 does not fully contain the result via
the chance-constrained method, and the number of vertices

for Kρ∗(α,S, T ,D) is smaller than |D| = 10 in Figure 5. Sto-
chastic optimization techniques, like the stochastic branch-
and-bound method, may improve accuracy in this case. This
is an area of current work.

6 CONCLUSION

We proposed a scalable technique to compute a polytopic
underapproximation of compact and convex stochastic reach-
avoid sets using an open-loop control. We characterized the
sufficient conditions under which stochastic reach-avoid sets
and their open-loop underapproximation are compact and
convex, then posed two convex optimization problems to
tightly underapproximate the open-loop underapproximation.
We also presented sufficient conditions for the admittance
of bang-bang optimal Markov controllers. Our approach is
highly scalable, does not suffer from the vertex-facet enumer-
ation problem, and is amenable to parallelization for higher
fidelity calculations. We presented the first demonstration
of safety verification through stochastic reach-avoid sets on
a high dimensional (40D) system. Future work will exploit
the bang-bang solution in alternative implementations of
Algorithm 1 and explore the use of stochastic optimization

techniques to further improve the quality of underapproxi-
mation.
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A PROOFS IN SECTIONS 3.1 AND 3.2

Fact 1 : Upper semi-continuity is preserved under multiplica-
tion, integration using a continuous stochastic kernel,
and partial supremum over compact sets [21, Props.
B.1 and B.4 and Thm. B.5].

Fact 2 : Log-concavity is preserved under multiplication, partial
integration, and partial supremum over convex sets [13,
Secs. 3.2.5 and 3.5.2].

Proof of Proposition 1. From (5b), the range of V̂ ∗
0 (x), and

N ≥ 1, V̂ ∗
0 (x) ≤ 1S(x) ∀ x ∈ X . From (6), Lπ∗

(α,S, T ) ⊆
{x ∈ X : 1S(x) ≥ α}. For α ∈ (0, 1], {x ∈ X : 1S(x) ≥ α} =
{x ∈ X : 1S(x) = 1} = S implying Lπ∗

(α,S, T ) ⊆ S.

Proof of Theorem 1. We prove the u.s.c property of V̂ ∗
k (·)

via induction using (5). Since T is closed, V̂ ∗
N (·) is u.s.c by

(5a). We know V̂ ∗
N−1(·) is u.s.c by (5b) and Fact 1, which

proves the base case of the induction. Assume for induction

that V̂ ∗
k+1(·) is u.s.c. We then conclude that V̂ ∗

k (·) is u.s.c. by
similar arguments, completing the proof.

Similarly, Ŵ ∗
0 (·) is u.s.c using (11) and Fact 1.

Since V̂ ∗
0 (·) and Ŵ ∗

0 (·) are u.s.c, we conclude that the sets

Lπ∗
(α,S, T ) and Kρ∗(α,S, T ) are closed for α ∈ (0, 1].

Proof of Theorem 2. The addition of the boundedness

requirement on S guarantees boundedness of Lπ∗
(α,S, T )

and Kρ∗(α,S, T ) by Lemma 3. The Heine-Borel theorem and
Theorem 1 completes the proof.

Proof of Proposition 2. Cartesian products preserve con-
vexity [13, Sec. 2.3.2]. The proof follows from Fact 2 and
(11).

Proof of Theorem 3. The proof of the log-concavity of V̂ ∗
k (·)

is similar to Theorem 1 and follows from Fact 2. We need S
and T to be convex for their respective indicator functions
to be log-concave. The additional restrictions of compactness
of U , continuity of Q(·|x, u), and Borel S, T guarantee the
existence of a Markov policy [12, Thm. 1].

Proposition 2 and Fact 2 ensures Ŵ ∗
k (·) is log-concave.

Log-concave functions are quasi-concave implying the con-

vexity of the sets Lπ∗
(α,S, T ) and Kρ∗(α,S, T ).

http://control.ee.ethz.ch/~mpt
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