# Optimal trade-off analysis for efficiency and safety in the spacecraft rendezvous and docking problem

#### Abraham Vinod and Meeko Oishi

Electrical and Computer Engineering, University of New Mexico



June 15, 2018

## Motivation



## Motivation





- Stochastic optimal control with requirements of
  - Safety (High probability of state constraints satisfaction)
  - Efficiency (Low fuel consumption)

Can we maximize safety and efficiency simultaneously?

## Spacecraft rendezvous and docking problem

Two spacecrafts in same circular orbit
 Relative planar dynamics: Clohessy-Wiltshire-Hill

$$\begin{aligned} \ddot{x} - 3\omega x - 2\omega \dot{y} &= \frac{u_1}{m_d} \\ \ddot{y} + 2\omega \dot{x} &= \frac{u_2}{m_d} \end{aligned} \} &\stackrel{T_s}{\Rightarrow} \begin{cases} \boldsymbol{x}_{t+1} &= A\boldsymbol{x}_t + B\overline{u}_t + \boldsymbol{w}_t \\ \boldsymbol{x}_t &= [x_t \ y_t \ \dot{x}_t \ \dot{y}_t]^\top \\ \boldsymbol{w}_t &\sim \mathcal{N}(\overline{0}, \boldsymbol{\Sigma}_{\boldsymbol{w}}) \end{aligned}$$

| Parameter                                    | Symbol                             | Value                                                               |
|----------------------------------------------|------------------------------------|---------------------------------------------------------------------|
| Sampling time period                         | Ts                                 | 20 s                                                                |
| Orbital radius                               | $R_0$                              | $7.2281 	imes 10^{6} \ { m m} \ (R_e + 850 \ { m km})$              |
| Gravitational constant<br>times Earth's mass | $\mu = \textit{GM}_{e}$            | $3.986 \times 10^{14} \ {\rm m^3 s^{-2}}$                           |
| Orbital frequency                            | $\omega = \sqrt{rac{\mu}{R_0^3}}$ | $1.027 \times 10^{-3} \rm ~rad~s^{-1}$                              |
| Deputy spacecraft mass                       | $m_d$                              | <b>300</b> kg                                                       |
| Noise covariance                             | $\Sigma_{w}$                       | $diag([10^{-4} \ 10^{-4} \ \frac{10^{-9}}{2} \ \frac{10^{-9}}{2}])$ |

Lesser, Oishi, & Erwin, CDC 2013

## Problem statements

Q1 Maximize probability of staying in line-of-sight cone S, reaching target T at N; and minimize fuel
Q2 Characterize an empirical lower bound on thruster limits

$$\begin{array}{l} \underset{\overline{u}_{0},\ldots,\overline{u}_{N-1}}{\text{minimize}} & \begin{bmatrix} L(\overline{U}) \\ -\mathbb{P}_{\boldsymbol{X}}^{\overline{x}_{0},\overline{U}} \{ \text{Reach } \mathcal{T} \text{ and stay within } \mathcal{S} \} \end{bmatrix} \\ \text{subject to} & \boldsymbol{x}_{k+1} = A\boldsymbol{x}_{k} + B\overline{u}_{k} + \boldsymbol{w}_{k}, \\ & \overline{u}_{k} \in \mathcal{U} = [-\overline{u}_{\text{bound}}, \overline{u}_{\text{bound}}]^{2}, \\ & \boldsymbol{w}_{k} \sim \mathcal{N}(\overline{0}, \boldsymbol{\Sigma}_{\boldsymbol{w}}) \end{array}$$

where  $\overline{U} = [\overline{u}_0 \dots \overline{u}_{N-1}]$ ,  $L(\overline{U}) = \|\overline{U}\|_2$ , N = 5 time steps (100 s),  $\boldsymbol{X} = [\boldsymbol{x}_1^\top \dots \boldsymbol{x}_N^\top]$ ,  $\boldsymbol{X} = \mathscr{A}\overline{x}_0 + H \ \overline{U} + G \ \boldsymbol{W}$ ,  $\boldsymbol{X} \sim \mathcal{N}(\overline{\mu}_{\boldsymbol{X}}, \Sigma_{\boldsymbol{X}})$ 

Vinod and Oishi

## Related work

#### Stochastic verification

Abate, Amin, Prandini, Lygeros, & Sastry (2007); Abate, Prandini, Lygeros, & Sastry (2008); Summers, & Lygeros (2010); Lesser, Oishi, & Erwin (2013); Gleason, Vinod, & Oishi (2017); Kariotoglou, Kamgarpour, Summers, & Lygeros (2017); Vinod & Oishi (2017, 2018)

#### Bi-criterion optimization

Pareto (1971); Luenberger (1995); Boyd & Vanderberge (2004);

#### Stochastic MPC approaches

Park, Cairano, & Kolmanovsky (2011); Gavilan, Vazquez, & Camacho (2012); Hartley, Trodden, Richards, & Maciejowski (2012); Weiss, Baldwin, Erwin, & Kolmanovsky (2015); Starek, Schmerling, Maher, Barbee, & Pavone (2016)

#### Lexicographic approaches

Dueri, Leve, Açıkmeşe (2016); Lesser and Abate (2017)

## Verification of LTI+Gaussian via convex optimization



- ► Reach-avoid objective:  $\forall k \in \mathbb{N}_{[0,N-1]}, \ \mathbf{x}_k \in S \land \mathbf{x}_N \in T$
- Admissible feedback laws  $\mathcal{M} = \{\pi : \mathcal{X} \to \mathcal{U} | \pi \text{ is measurable} \}$

 $\geq$ 

 $\begin{array}{ll} \text{maximize} & \mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0,\pi}\{\mathsf{Reach-avoid}\} \end{array}$ 

subject to  $\pi_k(\cdot) \in \mathcal{M}$ 

Dynamic programming Hard to compute!  $\begin{array}{ll} \text{maximize} & \mathbb{P}_{\boldsymbol{X}}^{\overline{X}_0,\overline{U}}\{\text{Reach-avoid}\}\\ \text{subject to} & \overline{U} \in \mathcal{U}^N\\ \text{Log-concave optimization}\\ \text{Easy to compute!} \end{array}$ 

Vinod & Oishi, LCSS 2017 Abate et. al., Automatica 2008; Summers & Lygeros, Automatica 2010

Vinod and Oishi

Optimal trade-off analysis in spacecraft rendezvous and docking problem

## Verification of LTI+Gaussian via convex optimization



- ► Reach-avoid objective:  $\forall k \in \mathbb{N}_{[0,N-1]}, \ \mathbf{x}_k \in S \land \mathbf{x}_N \in T$
- Admissible feedback laws  $\mathcal{M} = \{\pi : \mathcal{X} \to \mathcal{U} | \pi \text{ is measurable} \}$

 $\geq$ 

 $\begin{array}{ll} \text{maximize} & \mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0,\pi} \{ \mathsf{Reach-avoid} \} \end{array}$ 

subject to  $\pi_k(\cdot) \in \mathcal{M}$ 

Dynamic programming Hard to compute!  $\begin{array}{ll} \text{maximize} & \int_{\mathcal{S}^{N-1}\times\mathcal{T}}\mathcal{N}(\overline{\mu}_{\boldsymbol{X}},\boldsymbol{\Sigma}_{\boldsymbol{X}}) \\ \text{subject to} & \overline{U}\in\mathcal{U}^{N} \end{array}$ 

Log-concave optimization Easy to compute!

Vinod & Oishi, LCSS 2017 Abate et. al., Automatica 2008; Summers & Lygeros, Automatica 2010

Vinod and Oishi

Optimal trade-off analysis in spacecraft rendezvous and docking problem

### Bi-criterion optimization

subject to  $\overline{y} \in \mathcal{Y}$ 

Scalarization: Choose  $\lambda \in [0,\infty]$  to convert (1) into (2),

$$\begin{array}{ll} \underset{\overline{y}}{\text{minimize}} & [1 \ \lambda] \begin{bmatrix} J_1(\overline{y}) \\ J_2(\overline{y}) \end{bmatrix} = J_1(\overline{y}) + \lambda J_2(\overline{y}) \\ \text{subject to} & \overline{y} \in \mathcal{Y} \end{array}$$
(2)



Pareto optimal curve by varying  $\lambda$ 

$$\begin{bmatrix} 1\\2 \end{bmatrix} \preceq \begin{bmatrix} 3\\4 \end{bmatrix} \text{ but } \begin{bmatrix} 1\\2 \end{bmatrix} \not\not\subset \begin{bmatrix} 2\\1 \end{bmatrix}$$

Boyd & Vanderberge, 2004

$$\begin{array}{ll} \underset{\overline{U}}{\operatorname{minimize}} & (\text{w.r.t.} \in \mathbb{R}^2_+) \left[ \begin{array}{c} \|\overline{U}\|_2 \\ -\log(\mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0,\overline{U}} \{ \text{Reach-avoid} \}) \end{array} \right] & (3) \\ \text{subject to} & \overline{U} \in \mathcal{U}^N \end{array}$$

Convex scalarized problem for (3)

 Log-concave P<sup>x̄<sub>0</sub>, Ū</sup><sub>X</sub> {Reach-avoid} = ∫<sub>S<sup>N-1</sup>×T</sub> N(μ̄<sub>X</sub>, Σ<sub>X</sub>)

 Tractable for polytopic S, T

 Genz's algorithm → noisy objective → use patternsearch
 Initialize by mean trajectory optimization

$$\begin{split} \underset{\overline{\mu}_{\boldsymbol{X}}, \overline{U}}{\min \text{initial}} & \|\overline{U}\|_{2} \\ \text{subject to} & \overline{\mu}_{\boldsymbol{X}} = \mathscr{A}\overline{x}_{0} + \mathscr{H} \ \overline{U} + \mathscr{G}\overline{\mu}_{\boldsymbol{W}}, \\ & \overline{\mu}_{\boldsymbol{X}} \in \mathcal{S}^{N-1} \times \mathcal{T}, \\ & \overline{U} \in \mathcal{U}^{N} \end{split}$$

$$\begin{array}{ll} \underset{\overline{U}}{\operatorname{minimize}} & (\text{w.r.t.} \in \mathbb{R}^2_+) \left[ \begin{array}{c} \|\overline{U}\|_2 \\ -\log(\mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0,\overline{U}}\{\text{Reach-avoid}\}) \end{array} \right] & (3) \\ \text{subject to} & \overline{U} \in \mathcal{U}^N \end{array}$$

Convex scalarized problem for (3)
 Log-concave P<sup>X<sub>0</sub>, Ū</sup>{Reach-avoid} = ∫<sub>S<sup>N-1</sup>×T</sub> N(μ<sub>X</sub>, Σ<sub>X</sub>)
 Tractable for polytopic S, T
 Genz's algorithm → noisy objective → use patternsearch
 Initialize by mean trajectory optimization (Quadratic program)

$$\begin{split} \underset{\overline{\mu}_{\boldsymbol{X}}, \overline{U}}{\min \text{initial}} & \|U\|_{2} \\ \text{subject to} & \overline{\mu}_{\boldsymbol{X}} = \mathscr{A}\overline{x}_{0} + \mathscr{H} \ \overline{U} + \mathscr{G}\overline{\mu}_{\boldsymbol{W}}, \\ & P\overline{\mu}_{\boldsymbol{X}} \leq \overline{q}, \\ & H\overline{U} \leq \overline{g} \end{split}$$

Scalarized cost  $\lambda \|\overline{U}\|_2 - \log(\mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0,\overline{U}}\{\text{Reach-avoid}\}), \lambda \in [0,\infty]$ 



Scalarized cost  $\lambda \|\overline{U}\|_2 - \log(\mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0,\overline{U}}\{\text{Reach-avoid}\}), \lambda \in [0,\infty]$ 



Scalarized cost  $\lambda \|\overline{U}\|_2 - \log(\mathbb{P}_{\boldsymbol{X}}^{\overline{\chi}_0,\overline{U}}\{\text{Reach-avoid}\}), \ \lambda \in [0,\infty]$ 



## Influence of the control bounds on safety

Initial state [0.75, -0.75, 0, 0]

Scalarized cost  $\lambda \|\overline{U}\|_2 - \log(\mathbb{P}_{\boldsymbol{X}}^{\overline{\kappa}_0,\overline{U}}\{\text{Reach-avoid}\})$  with  $\lambda \in [0,\infty]$ 

 $\mathcal{U} = [-\overline{u}_{\mathrm{bound}}, \overline{u}_{\mathrm{bound}}]^2$  with  $\overline{u}_{\mathrm{bound}} \in \{0.05, 0.0625, 0.075, 0.1, 0.5\}$ 



Summary, future work, and acknowledgements

#### Summary

- ► Trade-off analysis b/n safety + efficiency
  - Convex bi-criterion optimization
- Influence of input bounds on safety

MATLAB code: github.com/unm-hscl/abyvinod-NAASS2018. Future work

- Chance-constrained framework
- Analysis of closed-loop controllers
- Linear time-varying system dynamics

### Work funded by

- NSF CMMI-1254990 (CAREER, Oishi),
- CNS-1329878, and



AFRL Grant Number FA9453-17-C-0087 (for Oishi).