
Optimal trade-off analysis for efficiency and
safety in the spacecraft rendezvous and docking

problem

Abraham Vinod and Meeko Oishi

Electrical and Computer Engineering,
University of New Mexico

June 15, 2018

Vinod and Oishi Optimal trade-off analysis in spacecraft rendezvous and docking problem 1 / 11



Motivation

I Stochasticity ← disturbances and unmodeled phenomena
I Stochastic optimal control with requirements of

I Safety (High probability of state constraints satisfaction)
I Efficiency (Low fuel consumption)

I Can we maximize safety and efficiency simultaneously?
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Spacecraft rendezvous and docking problem

ẍ − 3ωx − 2ωẏ = u1
md

ÿ + 2ωẋ = u2
md

}
Ts
⇒


xt+1 = Axt + But + w t

xt = [xt yt ẋt ẏt ]>
w t ∼ N (0,Σw )

I Two spacecrafts in same circular orbit
I Relative planar dynamics: Clohessy-Wiltshire-Hill

Parameter Symbol Value
Sampling time period Ts 20 s

Orbital radius R0 7.2281× 106 m (Re + 850 km)
Gravitational constant

µ = GMe 3.986× 1014 m3s−2
times Earth’s mass
Orbital frequency ω =

√
µ
R3

0
1.027× 10−3 rad s−1

Deputy spacecraft mass md 300 kg
Noise covariance Σw diag([10−4 10−4 10−9

2
10−9

2 ])
Lesser, Oishi, & Erwin, CDC 2013
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Problem statements

Q1 Maximize probability of staying in line-of-sight cone
S, reaching target T at N; and minimize fuel

Q2 Characterize an empirical lower bound on thruster
limits

minimize
u0, . . . , uN−1

[
L(U)

−Px0,U
X {Reach T and stay within S}

]
subject to xk+1 = Axk + Buk + wk ,

uk ∈ U = [−ubound, ubound]2,
wk ∼ N (0,Σw )

where U = [u0 . . . uN−1], L(U) = ‖U‖2, N = 5 time steps (100 s),
X = [x>1 . . . x>N ], X = A x0 + H U + G W , X ∼ N (µX ,ΣX)
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Verification of LTI+Gaussian via convex optimization

XS

T

x0
π∗

π2

I Reach-avoid objective: ∀k ∈ N[0,N−1], xk ∈ S ∧ xN ∈ T
I Admissible feedback laws M = {π : X → U|π is measurable}

maximize Px0,π
X {Reach-avoid}

subject to πk (·) ∈M

maximize Px0,U
X {Reach-avoid}

subject to U ∈ UN
≥

Dynamic programming Log-concave optimization
Hard to compute! Easy to compute!

Vinod & Oishi, LCSS 2017
Abate et. al., Automatica 2008; Summers & Lygeros, Automatica 2010

Vinod and Oishi Optimal trade-off analysis in spacecraft rendezvous and docking problem 6 / 11



Verification of LTI+Gaussian via convex optimization

XS

T

x0
π∗

π2

I Reach-avoid objective: ∀k ∈ N[0,N−1], xk ∈ S ∧ xN ∈ T
I Admissible feedback laws M = {π : X → U|π is measurable}

maximize Px0,π
X {Reach-avoid}

subject to πk (·) ∈M

maximize
∫
SN−1×T N (µX ,ΣX )

subject to U ∈ UN
≥

Dynamic programming Log-concave optimization
Hard to compute! Easy to compute!

Vinod & Oishi, LCSS 2017
Abate et. al., Automatica 2008; Summers & Lygeros, Automatica 2010

Vinod and Oishi Optimal trade-off analysis in spacecraft rendezvous and docking problem 6 / 11



Bi-criterion optimization
minimize

y
(w.r.t. ∈ R2

+)
[

J1(y)
J2(y)

]
subject to y ∈ Y

(1)

Scalarization: Choose λ ∈ [0,∞] to convert (1) into (2),

minimize
y

[1 λ]
[

J1(y)
J2(y)

]
= J1(y) + λJ2(y)

subject to y ∈ Y
(2)
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Boyd & Vanderberge, 2004
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Trade-off analysis between safety and efficiency

minimize
U

(w.r.t. ∈ R2
+)

[
‖U‖2

− log(Px0,U
X {Reach-avoid})

]
subject to U ∈ UN

(3)

I Convex scalarized problem for (3)
I Log-concave Px0,U

X {Reach-avoid} =
∫
SN−1×T N (µX ,ΣX )

I Tractable for polytopic S, T
I Genz’s algorithm → noisy objective → use patternsearch

I Initialize by mean trajectory optimization

(Quadratic program)

minimize
µX ,U

‖U‖2

subject to µX = A x0 + H U + GµW ,

µX ∈ SN−1 × T ,
U ∈ UN
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Trade-off analysis between safety and efficiency
Initial position (m) (0.75,−0.75) Input space (N) [−0.1, 0.1]2

Initial velocity (0, 0) Compute (min) ∼ 59 (17 evals)

Scalarized cost λ‖U‖2 − log(Px0,U
X {Reach-avoid}), λ ∈ [0,∞]
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Influence of the control bounds on safety
Initial state [0.75,−0.75, 0, 0]

Scalarized cost λ‖U‖2 − log(Px0,U
X {Reach-avoid}) with λ ∈ [0,∞]

U = [−ubound, ubound]2 with ubound ∈ {0.05, 0.0625, 0.075, 0.1, 0.5}

Vinod and Oishi Optimal trade-off analysis in spacecraft rendezvous and docking problem 10 / 11



Summary, future work, and acknowledgements
Summary
I Trade-off analysis b/n safety + efficiency

I Convex bi-criterion optimization
I Influence of input bounds on safety

MATLAB code: github.com/unm-hscl/abyvinod-NAASS2018.
Future work
I Chance-constrained framework
I Analysis of closed-loop controllers
I Linear time-varying system dynamics

Work funded by
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I CNS-1329878, and
I AFRL Grant Number FA9453-17-C-0087 (for Oishi).
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