Optimal trade-off analysis for efficiency and safety in the spacecraft rendezvous and docking problem

Abraham Vinod and Meeko Oishi

Electrical and Computer Engineering, University of New Mexico

June 15, 2018

Motivation

 \triangleright Stochasticity \leftarrow disturbances and unmodeled phenomena \triangleright Stochastic optimal control with requirements of \triangleright Safety (High probability of state constraints satisfaction) \blacktriangleright Efficiency (Low fuel consumption) \triangleright Can we maximize safety and efficiency simultaneously?

Motivation

- \triangleright Stochastic optimal control with requirements of
	- \triangleright Safety (High probability of state constraints satisfaction)
	- Efficiency (Low fuel consumption)

Spacecraft rendezvous and docking problem

Two spacecrafts in same circular orbit Relative planar dynamics: Clohessy-Wiltshire-Hill

$$
\ddot{x} - 3\omega x - 2\omega \dot{y} = \frac{u_1}{m_d} \left\{ \begin{array}{c} T_s \\ \Rightarrow \\ T_s \\ \Rightarrow \\ \mathbf{w}_t \sim \mathcal{N}(\overline{0}, \Sigma_{\mathbf{w}}) \end{array} \right\} \xrightarrow{\mathbf{u}_t} \begin{cases} \mathbf{x}_{t+1} = A\mathbf{x}_t + B\overline{u}_t + \mathbf{w}_t \\ \mathbf{x}_t = \left[x_t \ y_t \ \dot{x}_t \ \dot{y}_t \right]^\top \\ \mathbf{w}_t \sim \mathcal{N}(\overline{0}, \Sigma_{\mathbf{w}}) \end{cases}
$$

Problem statements

Q1 Maximize probability of staying in line-of-sight cone S, reaching target T at N; and minimize fuel Q₂ Characterize an empirical lower bound on thruster limits

$$
\begin{array}{ll}\n\text{minimize} & \left[& L(\overline{U}) \\
\overline{u}_0, \dots, \overline{u}_{N-1} & \left[-\mathbb{P}_{\mathbf{X}}^{\overline{x}_0, \overline{U}} \left\{ \text{Reach } \mathcal{T} \text{ and stay within } \mathcal{S} \right\} \right] \\
\text{subject to} & \mathbf{x}_{k+1} = A\mathbf{x}_k + B\overline{u}_k + \mathbf{w}_k, \\
& \overline{u}_k \in \mathcal{U} = \left[-\overline{u}_{\text{bound}}, \overline{u}_{\text{bound}} \right]^2, \\
& \mathbf{w}_k \sim \mathcal{N}(\overline{0}, \Sigma_{\mathbf{w}})\n\end{array}
$$

where $U = [\overline{u}_0 \ \ldots \ \overline{u}_{N-1}], \ L(U) = \|\,U\|_2, \ N = 5$ time steps $(100 \ \text{s}),$ $\boldsymbol{X} = [\boldsymbol{x}_1^\top \ \dots \ \boldsymbol{x}_N^\top], \ \boldsymbol{X} = \mathscr{A} \overline{\boldsymbol{x}}_0 + \boldsymbol{H} \ \overline{\boldsymbol{U}} + \boldsymbol{G} \ \boldsymbol{W}, \ \boldsymbol{X} \sim \mathcal{N}(\overline{\mu}_{\boldsymbol{X}}, \Sigma_{\boldsymbol{X}})$

Related work

Stochastic verification

Abate, Amin, Prandini, Lygeros, & Sastry (2007); Abate, Prandini, Lygeros, & Sastry (2008); Summers, & Lygeros (2010); Lesser, Oishi, & Erwin (2013); Gleason, Vinod, & Oishi (2017); Kariotoglou, Kamgarpour, Summers, & Lygeros (2017); Vinod & Oishi (2017, 2018)

Bi-criterion optimization

Pareto (1971); Luenberger (1995); Boyd & Vanderberge (2004);

Stochastic MPC approaches

Park, Cairano, & Kolmanovsky (2011); Gavilan, Vazquez, & Camacho (2012); Hartley, Trodden, Richards, & Maciejowski (2012); Weiss, Baldwin, Erwin, & Kolmanovsky (2015); Starek, Schmerling, Maher, Barbee, & Pavone (2016)

Lexicographic approaches

Dueri, Leve, Acıkmese (2016); Lesser and Abate (2017)

Verification of LTI+Gaussian via convex optimization

- **►** Reach-avoid objective: $\forall k \in \mathbb{N}_{[0,N-1]}, x_k \in S \land x_N \in \mathcal{T}$
- Admissible feedback laws $M = {\pi : \mathcal{X} \rightarrow \mathcal{U} | \pi}$ is measurable

≥

 $\maximize \quad \mathbb{P}_{\boldsymbol{X}}^{\overline{\chi}_0, \pi} \{ \mathsf{Reach}\text{-}\mathsf{avoid} \}$

subject to $\pi_k(\cdot) \in \mathcal{M}$

Hard to compute! Easy to compute!

 $\text{maximize} \quad \mathbb{P}_{\textbf{X}}^{\overline{\mathbf{x}}_0, U} \{ \text{Reach-avoid} \}$ subject to $\overline{U} \in \mathcal{U}^N$ Dynamic programming Log-concave optimization

> Vinod & Oishi, LCSS 2017 Abate et. al., Automatica 2008; Summers & Lygeros, Automatica 2010

Vinod and Oishi **Optimal trade-off analysis in spacecraft** rendezvous and docking problem **6** / 11

Verification of LTI+Gaussian via convex optimization

- **►** Reach-avoid objective: $\forall k \in \mathbb{N}_{[0,N-1]}, x_k \in S \land x_N \in \mathcal{T}$
- Admissible feedback laws $M = \{\pi : \mathcal{X} \to \mathcal{U} | \pi \text{ is measurable}\}\$

 $\maximize \quad \mathbb{P}_{\boldsymbol{X}}^{\overline{\chi}_0, \pi} \{ \mathsf{Reach}\text{-}\mathsf{avoid} \}$

subject to $\pi_k(\cdot) \in \mathcal{M}$

Hard to compute! Easy to compute!

maximize $\int_{\mathcal{S}^{N-1}\times\mathcal{T}} \mathcal{N}(\overline{\mu}_{\mathbf{X}}, \Sigma_{\mathbf{X}})$ \geq subject to $\overline{U} \in \mathcal{U}^N$

Dynamic programming Log-concave optimization

Vinod & Oishi, LCSS 2017 Abate et. al., Automatica 2008; Summers & Lygeros, Automatica 2010

Vinod and Oishi **Optimal trade-off analysis in spacecraft** rendezvous and docking problem **6** / 11

Bi-criterion optimization

$$
\begin{array}{ll}\text{minimize} & (\mathsf{w.r.t.} \in \mathbb{R}_+^2) \left[\begin{array}{c} J_1(\overline{\mathsf{y}}) \\ J_2(\overline{\mathsf{y}}) \end{array} \right] \\ \text{with } \mathsf{z} \text{ is the } \overline{\mathsf{z}} = \overline{\mathsf{z}} \text{ and } \mathsf{z} \text{.} \end{array} \tag{1}
$$

subject to $\overline{y} \in \mathcal{Y}$

Scalarization: Choose $\lambda \in [0,\infty]$ to convert [\(1\)](#page-8-0) into [\(2\)](#page-8-1),

$$
\begin{array}{ll}\text{minimize} & \begin{bmatrix} 1 & \lambda \end{bmatrix} \begin{bmatrix} J_1(\overline{y}) \\ J_2(\overline{y}) \end{bmatrix} = J_1(\overline{y}) + \lambda J_2(\overline{y})\\ \text{subject to} & \overline{y} \in \mathcal{Y} \end{array} \tag{2}
$$

Pareto optimal curve by varying *λ*

$$
\left[\begin{array}{c}1\\2\end{array}\right]\preceq\left[\begin{array}{c}3\\4\end{array}\right]\text{ but }\left[\begin{array}{c}1\\2\end{array}\right]\Huge|_2^{\chi}\left[\begin{array}{c}2\\1\end{array}\right]
$$

Boyd & Vanderberge, 2004

$$
\begin{array}{ll}\text{minimize} & \big(\text{w.r.t.} \in \mathbb{R}^2_+\big) \left[\begin{array}{c} \|\overline{U}\|_2 \\ -\log(\mathbb{P}_{\boldsymbol{X}}^{\overline{x}_0, \overline{U}} \{\text{Reach-avoid}\}) \end{array} \right] \\ \text{subject to} & \overline{U} \in \mathcal{U}^N \end{array} \end{array} \tag{3}
$$

 \triangleright Convex scalarized problem for [\(3\)](#page-9-0) \blacktriangleright Log-concave $\mathbb{P}_{\bm{X}}^{\overline{x}_0, \overline{U}}$ {Reach-avoid} = $\int_{\mathcal{S}^{N-1} \times \mathcal{T}} \mathcal{N}(\overline{\mu}_{\bm{X}}, \Sigma_{\bm{X}})$ \blacktriangleright Tractable for polytopic S, \mathcal{T} \triangleright Genz's algorithm \rightarrow noisy objective \rightarrow use patternsearch \blacktriangleright Initialize by mean trajectory optimization

minimize
$$
\|\overline{U}\|_2
$$

\n $\overline{\mu}_{\mathbf{X}}, \overline{U}$
\nsubject to $\overline{\mu}_{\mathbf{X}} = \mathscr{A}\overline{x}_0 + \mathscr{H}(\overline{U}) + \mathscr{G}\overline{\mu}_{\mathbf{W}},$
\n $\overline{\mu}_{\mathbf{X}} \in \mathcal{S}^{N-1} \times \mathcal{T},$
\n $\overline{U} \in \mathcal{U}^N$

$$
\begin{array}{ll}\text{minimize} & (\text{w.r.t. } \in \mathbb{R}_+^2) \left[\begin{array}{c} \| \overline{U} \|_2 \\ -\log(\mathbb{P}_{\mathbf{X}}^{\overline{x}_0, \overline{U}} \{ \text{Reach-avoid} \}) \end{array} \right] \\ \text{subject to} & \overline{U} \in \mathcal{U}^N \end{array} \end{array} \tag{3}
$$

 \triangleright Convex scalarized problem for [\(3\)](#page-9-0) \blacktriangleright Log-concave $\mathbb{P}_{\bm{X}}^{\overline{x}_0, \overline{U}}$ {Reach-avoid} = $\int_{\mathcal{S}^{N-1} \times \mathcal{T}} \mathcal{N}(\overline{\mu}_{\bm{X}}, \Sigma_{\bm{X}})$ \blacktriangleright Tractable for polytopic S, \mathcal{T} \triangleright Genz's algorithm \rightarrow noisy objective \rightarrow use patternsearch Initialize by mean trajectory optimization (Quadratic program)

minimize
$$
\|\overline{U}\|_2
$$

\n $\overline{\mu}_{\mathbf{X}}, \overline{U}$
\nsubject to $\overline{\mu}_{\mathbf{X}} = \mathscr{A}\overline{x}_0 + \mathscr{H}(\overline{U}) + \mathscr{G}\overline{\mu}_{\mathbf{W}},$
\n $P\overline{\mu}_{\mathbf{X}} \leq \overline{q},$
\n $H\overline{U} \leq \overline{g}$

 $\text{Initial position (m)} \quad (0.75, -0.75) \quad \text{Input space (N)} \quad [-0.1, 0.1]^2$ Initial velocity (0*,* 0) Compute (min) ∼ 59 (17 evals)

 $\mathsf{S}\mathsf{calarized}\ \mathsf{cost}\ \lambda \|\overline{U}\|_2 - \mathsf{log}(\mathbb{P}_{\bm{X}}^{\overline{\mathsf{x}}_0,U}\{\mathsf{Reach}\text{-}\mathsf{avoid}\}),\ \lambda\in[0,\infty]$

Initial position (m) (0*.*75*,* −0*.*75) Input space (N) [−0*.*1*,* 0*.*1]² Initial velocity (0*,* 0) Compute (min) ∼ 59 (17 evals)

 $\mathsf{S}\mathsf{calarized}\ \mathsf{cost}\ \lambda \|\overline{U}\|_2 - \mathsf{log}(\mathbb{P}_{\bm{X}}^{\overline{\mathsf{x}}_0,U}\{\mathsf{Reach}\text{-}\mathsf{avoid}\}),\ \lambda\in[0,\infty]$

 $Initial$ position (m) (0.75*,* −0.75) Input space (N) $[-0.1, 0.1]^{2}$ Initial velocity (0*,* 0) Compute (min) ∼ 59 (17 evals)

 $\mathsf{S}\mathsf{calarized}\ \mathsf{cost}\ \lambda \|\overline{U}\|_2 - \mathsf{log}(\mathbb{P}_{\bm{X}}^{\overline{\mathsf{x}}_0,U}\{\mathsf{Reach}\text{-}\mathsf{avoid}\}),\ \lambda\in[0,\infty]$

Influence of the control bounds on safety

Initial state [0*.*75*,* −0*.*75*,* 0*,* 0]

 $\mathsf{S}\mathsf{calarized}\ \mathsf{cost}\ \lambda \|\overline{U}\|_2 - \mathsf{log}(\mathbb{P}_{\bm{X}}^{\overline{\chi}_0,U}\{\mathsf{Reach}\text{-}\mathsf{avoid}\})\ \mathsf{with}\ \lambda\in[0,\infty]$

 $\mathcal{U} = [-\overline{u}_{\text{bound}}, \overline{u}_{\text{bound}}]^2$ with $\overline{u}_{\text{bound}} \in \{0.05, 0.0625, 0.075, 0.1, 0.5\}$

Summary, future work, and acknowledgements

Summary

- \blacktriangleright Trade-off analysis b/n safety $+$ efficiency
	- \triangleright Convex bi-criterion optimization
- \blacktriangleright Influence of input bounds on safety

MATLAB code: github.com/unm-hscl/abyvinod-NAASS2018. **Future work**

- \blacktriangleright Chance-constrained framework
- Analysis of closed-loop controllers
- \blacktriangleright Linear time-varying system dynamics

Work funded by

- INSF CMMI-1254990 (CAREER, Oishi),
- CNS-1329878, and

▶ AFRL Grant Number FA9453-17-C-0087 (for Oishi).