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Abstract

Guaranteeing safety and performance are crucial components in any control system,

and particularly relevant in light of growing interest in reliable autonomy. In safety-

critical applications like biomedical devices, spacecraft applications, and self-driving

cars, the cost of failure can be severe. Verification provides these guarantees by

characterizing the “good” initial states or configurations from which a state can be

driven to remain within a collection of pre-specified safe sets, while respecting the

system dynamics, bounds on control authority, and additive uncertainties. We also

wish to design controllers to achieve this objective. This dissertation proposes novel

theory and scalable algorithms for tractable solutions to the stochastic reachability

problems.

We treat the verification problems as backward stochastic reachability problems,

since we wish to ascertain a set of initial states (back in time) that satisfy the pre-

specified safety constraints in future and determine the associated admissible con-
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trollers. Current approaches to this problem are restricted to low dimensional systems

since they rely on grids over the state space. In contrast, we have developed several

approaches which avoid gridding, scale well with time and system dimension, and may

be terminated at any time without compromising on the solution integrity (anytime

algorithms). Additionally, our approaches enable controller synthesis that is open-

loop or affine feedback. We design these algorithms by characterizing the sufficient

conditions for the convexity and compactness of the sets. This enables verification

of high-dimensional systems using convex optimization, stochastic programming, and

Fourier transforms. We apply our methods to verification of spacecraft rendezvous,

as well as to automated anesthesia delivery.

We also discuss a related problem of predicting the stochasticity of the state of

the system at a future time, given an initial state — the problem of forward stochastic

reachability. We address this problem using Fourier transforms and computational

geometry. Using forward stochastic reachability, we also introduce probabilistic oc-

cupancy functions to reason about collision probability and characterize keep-out

sets for probabilistic safety. The applications include autonomous surveillance and

stochastic motion planning problems.

We present an open-source MATLAB toolbox, SReachTools, that implements all

the algorithms presented in this dissertation in an easily-accessible code base.
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Chapter 1

Introduction

1.1 Motivation

One of the major goals of control system theory is to design of safe and efficient

autonomy. These safety and performance guarantees come to the forefront in safety-

critical applications like biomedical devices, spacecraft applications, and self-driving

cars where the cost of failure is severe. This goal is also seen in robotics and mo-

tion planning problems, where the system must remain within pre-specified operation

parameters for continued operation. Reachability analysis provides a rigorous math-

ematical framework to address these verification problems [Gir05; MBT05; Aba+08;

SL10]. In this dissertation, we propose novel theory and algorithms to perform scal-

able stochastic reachability analysis (reachability in presence of stochastic distur-

bance) and controller synthesis.

We discuss two motivating applications for the verification problems of interest in

this thesis — the problems of forward stochastic reachability and backward stochastic

reachability. Informally, forward stochastic reachability analysis characterizes the

stochasticity of the state of a system at a future time in interest. In contrast, the

backward stochastic reachability analysis determines the set of safe initial states and

1



CHAPTER 1. INTRODUCTION

Figure 1.1: We wish to drive the blue robot towards a goal while avoiding the red
obstacles which have stochastic dynamics. The red regions are the keep-out regions
to achieve a moderate probabilistic safety, and the blue trajectory is a feasible proba-
bilistically safe trajectory. On the other hand, avoiding the yellow regions guarantee
a higher probabilistic safety, but the problem becomes infeasible.

their associated controllers that satisfies a given safety specification within a time

horizon.

Figure 1.1 describes a stochastic motion planning problem which requires forward

stochastic reachability. To ensure the safe operation of the blue robot, we require the

autonomous controller to design safe trajectories while accounting for the dynamics of

the blue robot, its actuation limits, and constraints arising from the environment. In

this problem, we have multiple obstacles (shown in red) that have complex geometries

and stochastic dynamics. Apart from existing constraints on the trajectory, the au-

tonomous controller must ensure that the probabilistic safety of the blue robot is above

a specified threshold. This is enforced by requiring the collision probability, the prob-

ability that the blue robot hits one of the red obstacles at some time in future when

it is at a particular location, is below a corresponding threshold. Such stochastic mo-

tion planning problems are ubiquitous in robotics [Mal+17; HVO17] and autonomous

2



CHAPTER 1. INTRODUCTION

Chief

Deputy

Line-of-sight
cone for safety

Figure 1.2: Space applications require safe spacecraft rendezvous for maintainance
and resupply missions. For safe operation, we require the autonomous controller
driving the deputy spacecraft to achieve rendezvous with the chief spacecraft, while
staying within a line-of-sight cone. Picture courtesy: NASA

transportation [Goo18; Sum+11]. Using forward stochastic reachability techniques,

we can characterize the stochasticity associated with the states of the obstacles at

future time instants. We also define the notion of probabilistic occupancy functions

to reason about the collision probability. In Figure 1.1, the red regions correspond

to the states which the red robots are highly likely to occupy resulting in high colli-

sion probability, whereas the yellow regions include the states which the red obstacles

are less likely to occupy. Using probabilistic occupancy function, we can construct

a collection of time-stamped keep-out regions that the blue robot must respect to

guarantee a desired level of probabilistic safety. These keep-out regions can be given

directly to existing deterministic motion planners to plan trajectories that meet the

specified probabilistic safety requirements. By characterizing sufficient conditions for

their convexity and compactness, we decrease the computational effort necessary to

plan these probabilistically safe trajectories. As seen in Figure 1.1, it is possible that

the motion planning problem is infeasible for very high safety probabilities.

Figure 1.2 describes a more realistic problem of a spacecraft rendezvous problem,

whose solution requires backward stochastic reachability analysis. In this problem, we

wish to autonomously maneuver a spacecraft, known as the “deputy”, to rendezvous

with another spacecraft, known as the “chief”. The relative dynamics of the deputy

3



CHAPTER 1. INTRODUCTION

spacecraft with respect to the chief, when both of these spacecrafts are in the same

circular orbit, are linear (Clohessy-Wiltshire-Hill dynamics) with additive stochastic

disturbance arising from the model uncertainties. The safety specification arises from

the need for accurate sensing. Here, the deputy must remain in a line-of-sight cone

and approach the origin, the location of the chief in the relative coordinate frame.

The automation on the deputy must also satisfy the actuator limits. To ensure safe

operation of this safety-critical and expensive application, we must identify the set

of “good” initial locations from which this safety specification can be met with a

probability of success above a desired threshold, while respecting the dynamics and

limits on actuation. Finally, we also require synthesis of admissible controllers for the

automation on the deputy spacecraft.

This thesis covers theoretical foundations and scalable algorithms to address both

of these problems. Current state-of-the-art approaches rely on grids over the state

space, limiting its application to low dimensional system. We use convex optimiza-

tion, stochastic programming, Fourier transforms, and computational geometry to

propose scalable and grid-free algorithms that outperform the current state-of-the-

art approaches. We establish sufficient conditions for convexity and compactness of

the sets of interest, exploit these properties for polytopic approximations, and lever-

age standard solvers to produce non-conservative probabilistic safety guarantees and

controller synthesis for these problems. We also present an open-source MATLAB

toolbox, SReachTools, that implements the proposed algorithms in a user-friendly

and extensible codebase.

1.2 Uncertainty in Control

Uncertainty is a common element in control problems. It may arise from vari-

ous sources — modeling limitations, disturbance effects (like weather), actions of

4



CHAPTER 1. INTRODUCTION

human(s)-in-the-control-loop, and sensor noise to list a few. In control theory, un-

certainties are typically dealt either in a robust sense or in a stochastic sense. In the

robust approach, the controllers are designed to handle the worst-case uncertainty

realization. This approach requires only bounds on the uncertainty and provides ab-

solute guarantees of safety. On the other hand, when stochastic information about

the uncertainty is available, we pursue probabilistic guarantees where the system can

be determined to be safe above a specified likelihood. The stochasticity information

of the uncertainty permits assessment of safety in a gradated fashion. Specifically, it

provides a degree of safety (a probabilistic guarantee of safety) instead of a binary safe

or not-safe assessment, as in the robust case. In problems that permit a small margin

of safety, say probability of collision must not be above 0.001, the robust approach

will provide overly conservative results, when compared to the stochastic approach.

For example, in the stochastic motion planning problem discussed in Figure 1.1,

the robust approach will require the blue robot to avoid a collection of sets that

includes all possible configurations of the red obstacles that may cause collision (ac-

counting for the worst-case possibilities). This set is guaranteed to contain the yellow

sets, since the yellow sets exclude the highly unlikely configurations which the keep-

out sets associated with the robust approach include. But as seen in this example,

the motion planning problem is infeasible when using yellow keep-out sets. In other

words, the associated very high safety probability requirement leads to an infeasible

motion planning problem. Consequently, the robust approach will also lead to an

infeasible problem, since it demands absolute safety. On the other hand, reducing

the probabilistic safety requirement (red sets) can provide feasible trajectories. Thus,

the stochastic description of the uncertainty permits a mathematical framework to

tradeoff performance with safety, which is critical in real-world applications. Note

that the reduced conservativeness in the stochastic motion planning problems is a

natural result of the more detailed mathematical model.

5



CHAPTER 1. INTRODUCTION

1.3 Stochastic Reachability: Theory and Compu-

tation

Reachability analysis provides a mathematical framework to determine if a control

system satisfies a given specification like safety. It also provides techniques for con-

troller synthesis in order to satisfy the given specification. We will consider the prob-

lem of stochastic reachability, i.e., reachability analysis for systems with stochastic

uncertainty.

Stochastic reachability analysis has been developed for the general class of discrete-

time stochastic hybrid systems [Aba+07; Aba+08; SL10]. This generic class of sys-

tem provides a rigorous mathematical framework to model systems with discrete and

continous elements, with stochastic and controlled discrete and continuous state tran-

sitions. A dynamic programming solution was proposed to perform stochastic reacha-

bility analysis for these systems [Aba+07]. However, this approach suffers significant

computational costs when used on high-dimensional systems, due to its reliance on a

grid over the continuous state space. A significant portion of this thesis is dedicated

to alleviating this lack of scalability by constructing theory and algorithms that can

perform stochastic reachability analysis without relying on a grid. We will restrict

our focus to nonlinear time-varying systems for the development of theory, and to

linear time-varying systems for computational algorithms. These restrictions arise

from the sufficient conditions we propose to attain convexity and compactness, the

key enabler for scalable and grid-free stochastic reachability analysis (see Table 4.1).

1.3.1 Forward Stochastic Reachability

Forward stochastic reachability analysis of a discrete-time stochastic system charac-

terizes two properties associated with the system state at a future time of interest:

1. its associated probability measure (the forward stochastic reach probability

6
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Initial

state
State

space

Smallest closed set whose

probability of occurrence is 1

Probability density of

state at future time

Figure 1.3: Forward stochastic reachability problem

measure) or density, and

2. its support, the smallest closed set that covers all the reachable states (the

forward stochastic reach set).

These properties, illustrated in Figure 1.3, can help us answer questions of the form:

what is the likelihood that the system at a future time of interest will lie in a target

set? Is there a non-zero likelihood of the state lying in a given collection of states at

a future time of interest?

As an illustrative example, consider a point mass system initialized at the origin

with its velocities drawn from a a truncated Gaussian. Figure 1.4 shows the forward

stochastic reach set and the probability measure (truncated Gaussian) after 7 time

steps. As expected, the probability density and forward stochastic reach set spreads

over larger areas of the state space over time, due to the propagation of the uncertainty

through the point mass dynamics.

Note that the forward stochastic reach probability density and reach set have been

analyzed separately in control theory literature for some special cases. For Gaussian-

perturbed linear systems, the probability measure at a future time of interest can

be obtained from the prediction steps of a Kalman filter [DCA94]. However, this

approach fails to generalize for non-Gaussian disturbances, since it tracks only the

first two moments of the state. Similarly, for LTI systems with bounded disturbances,

established verification methods [Kva+15; KV06; Gir05] can be adapted to overap-

proximate the forward stochastic reachable set. However, these methods return a

7
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Forward stochastic reach
set

Forward stochastic reach
probability density

Figure 1.4: Forward stochastic reachability analysis for a discrete-time point mass
system perturbed by a truncated Gaussian disturbance after 7 time steps, when ini-
tialized at the origin. The truncated Gaussian had a non-zero mean and non-identity
covariance matrix.

trivial result with unbounded disturbances and do not address the forward stochastic

reach probability measure, which provides the likelihood of reaching a given set of

states. Alternatively, one can use grid-based dynamic programming approaches to

compute these quantities, which do not scale well with system dimension [Aba+07].

In this thesis, we propose a scalable and grid-free approach to characterize all pos-

sible realizations of the state and the associated likelihoods using Fourier transforms

and computational geometry. We also discuss sufficient conditions under which the

forward stochastic reach probability measure or density are log-concave and the for-

ward stochastic reach set is convex. We also apply forward stochastic reachability to

the problem of stochastic motion planning (Figure 1.1) and the problem of stochastic

target capture.

Application: Stochastic Motion Planning

In stochastic motion planning problems (Figure 1.1), we wish to navigate a control-

lable robot with known dynamics in a known environment that has rigid-body obsta-

cles with known stochastic dynamics. Several approaches exist for obstacle avoidance

8
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with static obstacles [KF11; LaV06; SFH02; Mao+17; BOW11], with growing re-

search in stochastic obstacle avoidance [TBF05; LKH10; Mal+17; Chi+15; Chi+17].

See [Mal+17, Sec. 2] for a more detailed survey. However, this problem remains

challenging to due to 1) the inherent non-convexity in the problem, and 2) lack of

efficient techniques to predict collision probability and identify bad states in which

collision is highly likely. Using forward stochastic reachability, we propose efficient

techniques to address the second challenge. Specifically, we construct probabilistic

occupancy functions to quantify the collision probability and characterize the keep-

out sets (probabilistic occupied sets) to guarantee probabilistically safe trajectories.

Probabilistic occupancy functions provide the probability with which a given state

at a particular time of interest is occupied by one of the rigid-body obstacles. The

superlevel sets of the probabilistic occupancy function provide the keep-out regions.

We also propose sufficient conditions under which the keep-out regions are closed,

bounded, compact, and convex (or a union of convex) sets. We then exploit these

set-theoretical properties to propose computationally efficient, scalable, grid-free, and

anytime algorithms to overapproximate the keep-out regions. Recall that anytime al-

gorithms provide a valid solution, even if terminated early. To demonstrate the utility

of these keep-out sets, we utilize existing successive convexification trajectory plan-

ners [MSA16; Mao+17] and receding horizon control to design probabilistically safe

trajectories for a stochastic motion planning problem.

Application: Stochastic Target Capture

We can also utilize forward stochastic reachability in the problem of stochastic non-

adversarial target capture which may arise, in e.g., the rescue of a lost first responder

in a building on fire [KRS04], capture of a non-aggressive UAV in an urban envi-

ronment [Gey08], or other non-antagonistic situations [Hol+09]. Informally, we wish

to maximize the probability of capture of a non-adversarial target with stochastic

9
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Figure 1.5: Stochastic reachability of a target tube characterizes the set Lπ∗0 (α,T )
and an admissible controller π∗. For any initial state in Lπ∗0 (α,T ), the state of
the stochastic system stays within the target tube T = {Tk}Nk=0, Tk ⊆ X , with a
likelihood higher than α. This problem will be formulated in Section 4.3.

dynamics using a controllable pursuer while respecting the pursuer dynamics. While

solutions for an adversarial target, based in a two-person, zero-sum differential game,

can accommodate bounded disturbances with unknown stochasticity [MT00; TLS00;

Tom+03; BFZ10; Hua+15], it will be conservative for a non-adversarial target, mod-

eled using stochastic dynamics.

We seek scalable solutions that synthesize an optimal controller for the non-

adversarial scenario, by exploiting the forward reachable set and probability measure

for the target. Specifically, we use convex optimization to provide the exact probabilis-

tic guarantee of success and the corresponding optimal controller. We experimentally

validate our approach on a quadrotor testbed.

1.3.2 Backward Stochastic Reachability

We frame the problem of backward stochastic reachability as the problem of stochastic

reachability of a target tube, motivated by the question: what initial states of a

stochastic dynamical system can be driven to stay within a target tube (a collection of

time-stamped target sets) with a desired likelihood, while respecting the given bounds

on control authority? Figure 1.5 provides an illustration of this problem. The qualifier

“backward” arises from the fact that we wish to acertain properties of initial system

10
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states based on safety specifications defined for the future states.

The problem of stochastic reachability of target tube subsumes existing work

on stochastic viability and terminal hitting-time stochastic reach-avoid problems

[Aba+08; SL10]. Stochastic viability problems are concerned with maximizing the

probability that system stays within a time-invariant safe set for a given time horizon

(target tube with time-invariant safe sets) [Aba+08]. Terminal hitting-time stochas-

tic reach-avoid problems are concerned with maximizing the probability that system

stays within a time-invariant safe set within the time horizon and hits a (potentially

different) target set at the time horizon [SL10].

Theory

The problem of backward stochastic reachability has received significant attention in

the verification literature. The dynamic programming formulation for the stochas-

tic reachability problem [Aba+07; Aba+08; SL10], casts the stochastic reachability

problem as a discrete-time stochastic optimal control problem (via Markov decision

process theory) [BS78]. It yields optimal value functions which map the states to

their maximal reach probability. The superlevel sets of these functions, the stochastic

reach sets, are the sets of “good” initial states, i.e., the set of initial states from which

the system may be driven to stay within the target tube with a probability greater

than a given threshold. For stochastic reach-avoid problems, sufficient conditions

have been proposed for the well-posedness of the stochastic reach-avoid problem and

the existence of an optimal Markov policy [Din+13; Kar+17; Yan18; VO17]. How-

ever, little is known about the sufficient conditions that guarantee convexity and

compactness of stochastic reach sets, which we address in this thesis. Specifically, we

propose sufficient conditions under which the optimal value functions are Borel mea-

surable, upper semicontinuous, and log-concave, and the stochastic reach set is closed,

bounded, compact, and convex. These theoretical results enable the construction of
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tight polytopic underapproximations (inner-approximations), that allow us to design

to scalable, grid-free, and anytime algorithms to verify high-dimensional systems.

Computation and controller synthesis

For the computation of the maximal reach probability, a numerical implementation

of the dynamic programming has been proposed, which requires gridding the con-

tinuous state space [SB98; Aba+07]. The reliance on a grid over the state space

translates to an exponentially increasing computational cost as the system dimension

increases, making this approach intractable for system dimensions higher than three

or four. Researchers have focused on alleviating the curse of dimensionality via ap-

proximate dynamic programming [KML16; Man+15], Gaussian mixtures [KML16],

particle filters [Man+15; LOE13], convex chance-constrained optimization [LOE13],

and semi-definite programming [Drz+16; Kar+17]. These techniques have been ap-

plied to systems that are at most 10-dimensional — far beyond the scope of what is

possible with dynamic programming, but not scalable to larger problems.

With respect to controller synthesis, the dynamic programming provides an op-

timal Markov controller in the form of a look-up table for low-dimensional sys-

tems [SB98; Aba+07]. Almost all of the above-mentioned approximative approaches

seek open-loop control laws for tractability, at the cost of significant conservativeness.

Approximate dynamic programming techniques can synthesize closed-loop controllers

by parameterizing the policy space [Man+15; Kar+17]. However, these approxima-

tion approaches do not guarantee an underapproximation of the safety probability.

This limits its application to safety-critical applications, where we can not afford to

be overconfident with the degree of safety.

In the past few decades, the controller synthesis problem in the stochastic optimal

control problems has received a lot of attention. Specifically, techniques based on

stochastic receding horizon control (also known as stochastic model predictive control)

12
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have been developed that can synthesize (sub)optimal controllers to drive the system

while satisfying the stochastic dynamics, probabilistic state and input constraints, and

minimizing a cost function. See [Mes16; FGS16] for recent surveys on this problem.

However, these techniques can not be used to compute the set of good initial states

which is the main focus of this thesis.

For the case of non-stochastic uncertainty, several approaches based on robust op-

timal control exist to identify the backward reach sets. For continuous time systems,

techniques using Hamilton-Jacobi formulation and level set techniques have been pro-

posed [MBT05]. For discrete time systems, techniques using computational geometry

are available for linear systems [BR71; Gir05; KV00; LGG09].

In this thesis, we present four novel approaches to evaluate the optimal safety

probability and the associated optimal (open-loop or affine) controller using con-

vex optimization, stochastic programming, and Fourier transforms. All of these ap-

proaches are grid-free and scale well with dimension when compared to the dynamic

programming approach [Aba+07]. We also combine these point-based verification

and controller synthesis techniques with a ray-shooting algorithm to underapproxi-

mate the sets in a scalable, grid-free, and anytime algorithm. This approach enables,

for the first time, the verification of systems as high as 40-dimensions.

Applications

We will demonstrate applications for backward stochastic reachability in the space-

craft rendezvous problem (Figure 1.2) and the automated anesthesia delivery sys-

tem [Aba+18]. Researchers have also used stochastic reachability techniques to ana-

lyze problems in motion planning [Mal+17], fishery management and mathematical

finance [SL10], and autonomous survelliance [Kar+11].

13



CHAPTER 1. INTRODUCTION

1.4 Contributions, Publications, and Organization

1.4.1 Contributions

The main focus of this thesis is on the theory and computation of stochastic reach-

ability and optimal control under uncertainty. Specifically, we utilize convex and

stochastic optimization, Fourier transforms, and computational geometry to propose

scalable, grid-free, and anytime algorithms as solutions for these problems. The main

contributions of this dissertation are summarized below.

1. Introduction of forward stochastic reachability as the characterization of the

stochasticity of the state of an uncontrolled stochastic system at a future time

of interest (Chapter 3). We propose an experimentally validated algorithm to

compute the probability measure and sets using computation geometry and

Fourier transforms. We also utilize forward stochastic reachability to compute

keep-out sets and their overapproximations (outer-approximations) for stochas-

tic motion planning problems with rigid-body obstacles that have stochastic

dynamics using probabilistic occupancy functions.

2. Underapproximation (inner-approximation) of the stochastic reach sets by ex-

ploiting convexity and compactness properties (Chapter 4). We first propose

sufficient conditions under which the stochastic reach sets, associated with the

stochastic reachability problem of a target tube (Figure 1.5), are closed, com-

pact, and convex. Next, we propose a grid-free and scalable approach that

uses a ray shooting algorithm to compute polytopic underapproximations of

the stochastic reach sets. Our approach can utlize any point-based stochas-

tic reachability algorithm in its computation. We also discuss an interpolative

scheme for the stochastic reach sets that remains underapproximative and en-

ables run-time verification.
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3. Development of four scalable algorithms to solve the stochastic reachability

problem of a target tube for a discrete-time stochastic linear (potentially time-

varying) system from a given initial state (Chapter 5). Specifically, for open-

loop controller synthesis, we propose a Fourier transform-based approach and

discuss significant computational improvements to the existing approaches of

particle control and convex chance-constraints. We also utilize these algorithms

to construct polytopic underapproximations of the stochastic reach sets. We

also present a novel chance-constrained approach using difference of convex

optimization for synthesis of affine controllers.

4. Development of SReachTools, an open-source MATLAB toolbox to implement

all of these algorithms in a user-friendly and repeatability-oriented manner.

(Chapter 6)

1.4.2 Publications

All of the work presented in this thesis is published or submitted for publication in

peer-reviewed journals and conferences. Publications that are currently under review

are marked with ‘s’. Here, * refers to works with equal contribution.

The work on forward stochastic reachability and probabilistic occupancy func-

tions, which is discussed in Chapter 3, is covered in:

(J1s) A. Vinod and M. Oishi, “Probabilistic occupancy function and sets using for-

ward stochastic reachability for rigid-body dynamic obstacles,” submitted to

IEEE Transactions on Automatic Control, 2018.

(C1) A. Vinod*, S. Rice*, Y. Mao, M. Oishi, B. Acikmese, “ Stochastic motion plan-

ning using successive convexification and probabilistic occupancy functions,” in

Proceedings of the IEEE Conference on Decision and Control (CDC), 2018.

(accepted for presentation)
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(C2) A. Vinod, B. HomChaudhuri, C. Hintz, A. Parikh, S. Buerger, M. Oishi, G.

Brunson, S. Ahmad, R. Fierro, “Multiple pursuer-based intercept via forward

stochastic reachability,” in Proceedings of the American Control Conference

(ACC), pp. 1559–1566, 2018.

(C3) B. HomChaudhuri*, A. Vinod*, M. Oishi, “ Computation of forward stochastic

reach sets: Application to stochastic, dynamic obstacle avoidance,” in Proceed-

ings of American Control Conference (ACC), pp. 4404-4411, 2017.

(C4) A. Vinod, B. HomChaudhuri, M. Oishi, “Forward stochastic reachability anal-

ysis for uncontrolled linear systems using Fourier transforms,” in Proceedings

of the Hybrid Systems: Computation and Control (HSCC), pp. 35–44, 2017.

(Best student paper award)

The work on stochastic reachability of a target tube, which is discussed in Chap-

ters 4 and 5, is covered in:

(J2s) A. Vinod and M. Oishi, “Stochastic reachability of a target tube: Theory and

computation,” submitted to IEEE Transactions on Automatic Control, 2018.

(J3) A. Vinod and M. Oishi, “Scalable underapproximation for stochastic reach-

avoid problem for high-dimensional LTI systems using Fourier transforms,” In

IEEE Control Systems Letters (L-CSS), pp. 316–321, 2017. (Also selected for

presentation at the IEEE Conference on Decision and Control (CDC), 2017)

(C5s) A. Vinod and M. Oishi, “Affine controller synthesis for stochastic reachability

via difference of convex programming,” submitted to Proceedings of the Hybrid

Systems: Computation and Control (HSCC), 2019.

(C6s) H. Sartipizadeh, A. Vinod, B. Acikmese, and M. Oishi, “Voronoi partition-based

scenario reduction for fast sampling-based stochastic reachability computation

of LTI systems,” submitted to Proceedings of the American Control Conference

(ACC), 2019.
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(C7) A. Vinod and M. Oishi, “ Scalable underapproximative verification of stochastic

LTI systems using convexity and compactness,” in Proceedings of the Hybrid

Systems: Computation and Control (HSCC), pp. 1–10, 2018.

(Finalist for the best paper award)

The toolbox SReachTools, that is discussed in Chapter 6, is covered in:

(C8s) A. Vinod, J. Gleason and M. Oishi, “SReachTools: A MATLAB stochastic

reachability toolbox,” submitted to Proceedings of the Hybrid Systems: Com-

putation and Control (HSCC), 2019.

Although not discussed in this dissertation, we have also developed set-theoretic

approaches for stochastic reachability. Referred to as Lagrangian methods, this ap-

proach extends existing results for robust stochastic reachability via computational

geometry [BR71] to underapproximate stochastic reach sets.

(C9) J. Gleason*, A. Vinod*, and M. Oishi, “Underapproximation of reach-avoid sets

for discrete-time stochastic systems via Lagrangian methods,” in Proceedings

of IEEE Conference on Decision and Control (CDC), pp. 4283-4290, 2017.

(C10) J. Gleason, A. Vinod, and M. Oishi, “ Viable set approximation for linear-

Gaussian systems with unknown, bounded variance,” in Proceedings of IEEE

Conference on Decision and Control (CDC), pp. 7049-7055, 2016.

Another work omitted from this dissertation is our work on systems involving human-

in-the-loop. Specifically, we have analyzed the user-interface problem, i.e., what infor-

mation should be given to a human who works with an automation to collaboratively

control a human-automation system to complete a task? We used discrete optimiza-

tion techniques, control theory, and human factor guidelines to address this question

in a scalable approach. As a numerical example, we constructed user-interfaces for

power grid operators using a IEEE-118 bus system. We have also used stochastic
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reachability to validate cognitive mental models for humans. These works are cov-

ered in:

(C11) A. Vinod, T. Summers, M. Oishi, “User-interface design for MIMO LTI human-

automation systems through sensor placement,” in Proceedings of American

Control Conference (ACC), pp. 5276-5283, 2016.

(C12) A. Vinod, Y. Tang, M. Oishi, K. Sycara, C. Lebiere, and M. Lewis, “Validation

of cognitive models for collaborative hybrid systems with discrete human input,”

in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 3339–3346, 2016

1.4.3 Organization

In Chapter 2, we present an overview of various mathematical concepts used in this

dissertation. We briefly review relevant concepts from real analysis, probability the-

ory, and optimization. We also discuss various system models and controller struc-

tures considered in this dissertation.

In Chapter 3, we present a scalable method to perform forward stochastic reach-

ability analysis, that is, a method to compute the forward stochastic reachable set

as well as its probability measure. We show that Fourier transforms can be used to

provide exact reachability analysis, for systems with bounded or unbounded distur-

bances and does not require the disturbance to be Gaussian. Further, we provide both

iterative and analytical expressions for the probability density, and show that our ap-

proach retrieves the Kalman filter’s prediction step for the case of Gaussian-perturbed

linear systems. We discuss sufficient conditions for the log-concavity of the proba-

bility density function, and convexity of the reach set. We also present the theory

and algorithms for computing probabilistic occupancy functions and the keep-out sets

which are useful in stochastic motion planning problems. Our scalable and grid-free

algorithms exploit our proposed sufficient conditions for convexity and compactness
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of the keep-out sets. We apply these algorithms to the problem of stochastic target

capture and stochastic motion planning. We also present expermimental validation

of our stochastic target capture solution on a quadrotor testbed.

In Chapter 4, we consider the problem of stochastic reachability of a target tube.

We propose sufficient conditions under which the optimal value functions are Borel

measurable, upper semi-continuous, and log-concave, and the stochastic reach set is

closed, bounded, compact, and convex. Using these convexity and compactness prop-

erties, we describe an underapproximative interpolation technique for the stochastic

reach sets. We also consider the problem of synthesis of open-loop and affine feedback

controllers to maximize probabilistic safety. Finally, we discuss how these point-based

stochastic reachability evaluations can provide underapproximations to the maximal

reach probability. These theoretical results enable the construction of tight polytopic

underapproximations, that lay the foundations for the design of scalable, grid-free,

and anytime algorithms to verify high-dimensional systems.

Chapter 5 builds on the results presented in Chapter 4 to propose four novel ap-

proaches for controller synthesis for the stochastic reachability of a target tube. Our

approaches are grid-free and scale well with dimension, when compared to the current

state-of-the-art dynamic programming-based approaches [Aba+07; Aba+08; SL10].

Our algorithms rely on convex optimization, stochastic programming, and Fourier

transforms to compute underapproximations to the maximal reach-probability as well

as synthesize open-loop or affine-feedback controllers. We also combine these point-

based verification and controller synthesis techniques with a ray-shooting algorithm

to underapproximate the sets in a scalable, grid-free, and anytime algorithm. This ap-

proach enables, for the first time, the verification of systems as high as 40-dimensions.

Chapter 6 discusses the features of the toolbox, SReachTools, that implements all

the algorithms presented in this dissertation, and Chapter 7 provides the summary of

contributions as well as identifies some of the promising directions for future research.
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Chapter 2

Preliminaries

2.1 Notation

We denote the Borel σ-algebra by B(·), a discrete-time time interval which inclusively

enumerates all integers in between a and b for a, b ∈ N and a ≤ b by N[a,b], random

vectors with bold case, and non-random vectors with an overline. The indicator

function of a non-empty set E is denoted by 1E(y), such that 1E(y) = 1 if y ∈ E and is

zero otherwise. We denote In ∈ Rn as the identity matrix, zp×q as a p×q-dimensional

matrix where each element is equal to the scalar z ∈ R. We define the Minkowski sum

as ⊕, the Cartesian product of the set G with itself k ∈ N times as Gk, the cardinality

of G with |G|, and the Lebesgue measure of a measurable set G by m(G). We define

the c-centered axis-aligned box of side 2a as Box(c, a) = {y ∈ Rn : ‖y − c‖∞ ≤ a}

where c ∈ Rn and a > 0.
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2.2 Real Analysis

2.2.1 Set Properties

This thesis focusses only on Euclidean spaces, denoted by Rn [Tao06b, Ex. 12.1.6].

We define a Euclidean “open” ball as follows,

OpenBall(x, r) = {y ∈ Rn : ‖y − x‖2 < r} (2.1)

Here, ‖ · ‖2 refers to the standard Euclidean norm (l2 norm) [Tao06b, Ex. 12.1.6].

We define a closed ball as

Ball(x, r) = {y ∈ Rn : ‖y − x‖2 ≤ r} (2.2)

We provide the definitions of open, closed, bounded, and compact sets [Tao06b,

Ch. 12]. A set E ⊆ Rn is said to be open if and only if for every x ∈ E , there exists

r > 0 such that OpenBall(x, r) ⊆ E [Tao06b, Prop. 12.2.15a]. A set E ⊆ Rn is closed

if and only if its complement Rn \ E = {x ∈ Rn : x 6∈ Rn} is open [Tao06b, Prop.

12.2.15e]. A set E ⊆ Rn is bounded if and only if there exists an open ball in Rn

which contains E [Tao06b, Defn. 12.5.3]. From the Heine-Borel theorem [Tao06b,

Thm 12.5.7], E ⊆ Rn is compact if and only if it is closed and bounded.

Next, we define the interior, boundary, and closure of a set. Let E ⊆ Rn, and let

x ∈ E . The point x is an interior point of E if there exists a radius r > 0 such that

OpenBall(x, r) ⊆ E [Tao06b, Defn. 12.2.5]. The set of all interior points of E is called

the interior of E . The point x is a boundary point if and only for every radius r > 0,

OpenBall(x, r) ∩ E 6= ∅ and OpenBall(x, r) ∩ (Rn \ E) 6= ∅ (every open ball has a

non-trivial intersection with the set and its complement) [Tao06b, Defn. 12.2.5]. The

set of all boundary points of E is called the boundary of E . An open set contains none

of its boundary points, while a closed contains all of its boundary points [Tao06b,
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Defn. 12.2.12]. The closure of E is the set of all points x ∈ E such that for every

radius r > 0, Ball(x, r) has a non-empty intersection with E [Tao06b, Defn. 12.2.9].

Note that these definitions can become trivial in some cases. For example, the

set {x ∈ R3 : x1 ≤ 0, x2 ≤ 0, x3 = 0} is a hyperplane in R3. All points on this

hyperplane is a boundary point, and it has an empty interior set [BV04, Eg. 2.2]. To

avoid this triviality, we define an affine dimension as the dimension of the affine hull

associated with a set E ⊆ Rn. Formally, an affine hull of a set E is the set of all affine

combinations of its points,

affine(E) =

{
k∑
i=1

θixi : xi ∈ E ,
k∑
i=1

θi = 1

}
(2.3)

The affine hull affine(E) is the smallest affine set that contains E . The relative interior

of a set E ⊆ Rn is defined as [BV04, Sec. 2.1.3]

relint(E) = {x ∈ Rn : ∃r > 0,Ball(x, r) ∩ affine(E) ⊆ E}

The relative interior of a set is always non-empty, while the interior of a low-

dimensional set embedded in a high-dimensional space is empty (no open ball ex-

ists such that it is a complete subset of the set). The relative boundary is ∂E =

closure(E) \ relint(E).

A set E is said to be convex if the line segment joining any two points in E lies

in E [BV04, Sec. 2.1.4]. Similar to (2.3), we define a convex hull of a set E as

follows [BV04, Sec. 2.1.4],

conv(E) =

{
k∑
i=1

θixi : xi ∈ E , θi ≥ 0,
k∑
i=1

θi = 1

}
. (2.4)

The set conv(E) is the smallest convex set that contains E . Of special interest is the

convex hull description of polyhedra. Given a set of points xi ∈ Rn with i ∈ N[1,M ]
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x ∈ E

E
x+ θ∗i di

E− ⊆ E

Figure 2.1: Ray-shooting algorithm to underapproximate convex and compact sets.

for some M ∈ N,M > 0, the convex hull of this finite set is a polytope [BV04, Sec.

2.2.4],

convi∈N[1,M ]
(xi) =

{
k∑
i=1

θixi : θi ≥ 0,
k∑
i=1

θi = 1

}
. (2.5)

A point x ∈ E is an extreme point of the set E if and only if the only way to express

x as a convex combination (1 − θ)y + θz, such that y ∈ E , z ∈ E , and 0 < θ < 1, is

by taking y = z = x [Web94, Ch. 2].

Polytopic underapproximation of convex and compact sets has been well stud-

ied [BV04, Ex. 2.25] [Web94, Ch. 2]. Figure 2.1 illustrates the ray-shooting ap-

proach to compute the polytopic underapproximations of convex and compact sets.

Given a convex and compact set E ⊆ Rn, a point x ∈ E , and a set of directions

di ∈ Rn, i ∈ N[1,M ], we compute θ∗i > 0 for each i ∈ N[1,M ] such that x + θ∗i di ∈ ∂E .

The convex hull of these extreme points (2.5) provides a polytope E−, which is an

underapproximation of E [Web94, Thm 2.6.16]. As expected, the tightness of this

underapproximation increases with the number of direction vectors considered. The

computation of the boundary points along each of the direction vector requires the

computation of θ∗i . This can be done efficiently via a convex line search (see Sec-

tions 2.4.1 and 5.7 and [BV04, Sec. 9.3]).
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2.2.2 Function Properties

A function f : Rn → R is upper semi-continuous if its superlevel sets {x ∈ Rn : f(x) ≥

α} for every α ∈ R are closed [Rud87, Defs. 2.3 and 2.8]. Alternatively [BS78, Lem.

7.13b], fu(y) is upper semi-continuous if for every sequence yi → y, we have

lim sup
i→∞

fu(yi) ≤ fu(y). (2.6)

A function f is lower semi-continuous if −f is upper semi-continuous, and lower

semi-continuous functions have closed sublevel sets {x ∈ Rn : f(x) ≤ α} for every

α ∈ R. Similar to (2.6), for every upper semi-continuous function fu(·), fl(y) ,

−fu(y) is lower semi-continuous, i.e., lim infi→∞(fl(yi)) ≥ fl(y) for every sequence

yi → y [BS78, Lem. 7.13a]. A function is continuous if and only if it is both upper

semi-continuous and lower semi-continuous. The indicator function 1E(·) of a closed

set E is upper semi-continuous.

A function f : Rn → R is convex if it has a convex domain dom(f) ⊆ Rn and it

satisfies the Jensens’ inequality, i.e., for every x, y ∈ dom(f) and θ ∈ [0, 1] [BV04,

Ch. 3.1.1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.7)

A function f : Rn → R is quasiconvex, if its domain and sublevel sets are convex,

i.e., {x ∈ dom(f) : f(x) ≤ α} is convex, for every α ∈ R. A function f is con-

cave, if −f is convex, and f is quasiconcave, if −f is quasiconvex. A non-negative

function f : Rn → R is log-concave if log f is concave with log 0 , −∞ [BV04,

Sec. 3.5.1]. Many standard distributions are log-concave, for example, Gaussian,

uniform, and exponential [BV04, Eg. 3.40]. The indicator function of a convex set

is log-concave (See [BV04, Eg. 3.1 and Sec. 3.1.7]). Since log-concave functions are
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quasiconcave [BV04, Sec. 3.5.1], their superlevel sets are convex.

2.3 Probability Theory

A random vector y ∈ Rp is a measurable transformation defined in the probabil-

ity space (Y ,B(Y),Py) with sample space Y ⊆ Rp, (Borel) sigma-algebra B(Y),

and probability measure P over B(Y). When y is absolutely continuous, y has a

probability density function (PDF) ψy such that given G ∈ B(Y), Py{y ∈ G} =∫
G ψy(y)dy where y ∈ Rp, and ψy is a non-negative Borel measurable function with∫
Y ψy(y)dy = 1 [CT97, Ch. 1]. For N ∈ N, a random process is a sequence of random

vectors {yk}
N
k=0 where each of the random vectors yk are defined in the probability

space (Rp,B(Rp),Pyk). The random vector Y = [y0 y1 . . . yN ]> is defined in the

probability space (Rp(N+1),B(Rp(N+1)),PY ), with PY induced from Pyk . See [Gub06;

CT97] for details.

The support of y, denoted by supp(y), is the smallest closed subset of Y with

probability of occurrence one. Equivalently, from [DJD88, Defn. A.5],

supp(y) = {y ∈ Y : ∀r > 0, Py{y ∈ Ball(y, r)} > 0} . (2.8)

From [DJD88, Sec. 2.1], Py is centrally symmetric if Py{y ∈ G} = P{y ∈ −G}

for every G ∈ B(Y). Recall that semi-continuous functions are Borel-measurable

[Tao06b, Lem. 18.5.8].

2.3.1 Log-Concavity in Probability Theory

A probability measure Py is log-concave if for all convex GA,GB ∈ B(Y) and ζ ∈

[0, 1], [Pre80, Sec. 2]

Py{y ∈ (ζGA ⊕ (1− ζ)GB)} ≥ Py{y ∈ GA}ζPy{y ∈ GB}1−ζ .
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Given a convex Borel set G ∈ B(Y) and a log-concave probability measure Py, the

following function h : Y → R is log-concave in c,

h(c) = Py{y ∈ {c} ⊕ G}. (2.9)

2.3.2 Fourier Transforms in Probability Theory

For some matrix H ∈ Rn×p, the stochasticity of the random vector x = Hy may be

characterized using Fourier transforms. The characteristic function of y ∈ Rp is

Ψy(γ) = Ey
[
exp

(
jγ>y

)]
=

∫
Rp
ejγ
>zψy(z)dz = F {ψy(·)} (−γ) (2.10)

where F{·} denotes the Fourier transformation operator and γ ∈ Rp. Since PDFs

are absolutely integrable, every PDF has a unique characteristic function [Bil95, Pg.

382]. The characteristic function of the random vector x is then given by

Ψx(η) = Ψy(H>η) (2.11)

with Fourier variable η ∈ Rn [VHO17, Sec. 2.1]. We can obtain the PDF of x via

inverse Fourier transform, provided Ψx is absolutely integrable [SW71, Cor. 1.21],

square integrable [SW71, Thm. 2.4], or Schwartz [SS03, Ch. 6, Thm. 2.4],

ψx(z) = F−1 {Ψx(·)} (−z) =

(
1

2π

)n ∫
Rn
e−jη

>zΨx(η)dη. (2.12)

Here, F−1{·} denotes the inverse Fourier transformation operator and dη is short

for dη1dη2 . . . dηp. Recall that Schwartz functions are infinitely differentiable function

on Rp such that the function and its derivatives decrease rapidly [SS03, Sec. 6.2].

Alternatively, we can compute the probability that x lies in a given hypercuboid,∫ b1
a1
. . .
∫ bn
an
ψx(z)dz for any ai < bi ∈ R with i ∈ N[1,n], from its characteristic function
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Ψx by Levy’s inversion theorem [CT97, Sec. 8.5, Thm. 1].

2.4 Optimization

2.4.1 Convex Programming

A convex optimization problem has the form:

minimize
z

f0(z) (2.13a)

subject to fi(z) ≤ 0 ∀i ∈ N[1,L] (2.13b)

Az = b (2.13c)

where z ∈ Rn is the decision variable, the functions fi : Rn → R are convex for every

i ∈ N[0,L] with L ∈ N, L > 0, and appropriately dimensioned matrix A and vector

b. A convex optimization problem has the useful property that every one of its local

minima is also a global minima, which provides significant computational benefits.

See [BV04, Ch. 4] for more details.

2.4.2 Difference of Convex Programming

A difference of convex program has the form:

minimize
z

f0(z)− g0(z) (2.14a)

subject to fi(z)− gi(z) ≤ 0 ∀i ∈ N[1,L] (2.14b)

where z ∈ Rn is the decision variable, the functions fi : Rn → R and gi : Rn → R are

convex for every i ∈ N[0,L], and L ∈ N, L > 0. While (2.14) in general is non-convex,

it becomes convex when gi(·) are affine functions [LB16][HPT00, Chap. 4].

The difference of convex programs form a very broad class of optimization prob-
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lems, as any twice differentiable function can be expressed as a difference of convex

function [Har59]. For example, sinx can be equivalently expressed as (x2 +sinx)−x2;

both functions individually are convex since their Hessians are non-negative [BV04,

Sec. 3.1.4]. A bilinear constraint of the form 2xy ≤ z with x, y, z ∈ R can be equiva-

lently expressed as a difference of convex constraint (x+ y)2 − (x2 + y2 + z) ≤ 0 by

completing the squares. Here, the functions (x+ y)2 and x2 + y2 + z are convex in

(x, y, z) [BV04, Sec. 3.1].

Difference of convex programs can be solved to global optimality via general

branch-and-bound methods [HPT00]. However, these methods typically require a

lot of computational effort. The penalty convex-concave procedure is a successive

convexification-based method to find local optima of (2.14) using convex optimiza-

tion [LB16, Alg. 3.1]. We summarize this procedure in Algorithm 1. It relies on the

observation that replacing gi(·) with their first-order Taylor series approximations

in (2.14) yields a convex subproblem, which can then be solved iteratively. To ac-

commodate a potentially infeasible starting point, we relax the difference of convex

constraints using slack variables δ
(k)

= [δ
(k)
1 δ

(k)
2 . . . δ

(k)
L ]
>
∈ RL, and penalize the

value of the slack variables for each iteration k. A possible exit condition, apart from

reaching the maximum number of iterations τ > τmax, is

∣∣∣(f0(zk)− g0(zk))− (f0(zk+1)− g0(zk+1)) + τk

L∑
i=1

(δki − δk+1
i )

∣∣∣ ≤ εdc (2.15a)

∑L

i=1
δk+1
i ≤ εviol ≈ 0 (2.15b)

where εdc > 0 and εviol > 0 are (small) user-specified tolerances. Here, (2.15a) checks

if the algorithm has converged, and (2.15b) checks if zk+1 is feasible. See [LB16] for

more details, such as convergence guarantees of Algorithm 1.
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Algorithm 1 Local optimization of (2.14) [LB16, Alg. 3.1]

Input: Initial point z0, τ0 > 0, τmax, γ > 1
Output: Local optima of (2.14)

1: k ← 0
2: do
3: Convexify: ĝi(z; zk)← gi(zk) +∇gi(zk)>(z − zk), ∀i ∈ N[1,L]

4: Solve the convex subproblem (2.16) for zk+1, δ
(k)

:

minimize f0(zk+1)− ĝ0(zk+1; zk) + τk
∑L

i=1
δ

(k)
i

subject to δ
(k) � 0 (2.16)

fi(zk+1)− ĝi(zk+1; zk) ≤ δ
(k)
i , ∀i ∈ N[1,L]

5: Update τk+1 ← min(γτk, τmax) and k ← k + 1
6: while τ ≤ τmax and (2.15) is not satisfied

2.5 System and Controller Models

2.5.1 Continuous-State System Models

Consider the discrete-time nonlinear time-varying system,

xk+1 = fk(xk, uk,wk) (2.17)

with state xk ∈ X ⊆ Rn, input uk ∈ U ⊆ Rm, disturbance wk ∈ W ⊆ Rp, time-

varying nonlinear function fk : X × U × W → X , an initial state x0 ∈ X , and a

time horizon of interest N ∈ N, N > 0. We assume the input space U to be compact.

We model the disturbance process {wk}N−1
k=0 in (2.17) as an independent (potentially

time-varying) random process. We will assume that the support of wk is W for

every k. Specifically, we associate with the random vector wk, a probability space

(W ,B(W),Pw,k) and a probability density function ψw,k for each k ∈ N[0,N−1]. The

concatenated disturbance random vector W = [w>0 w
>
1 . . . w>N−1]

>
is defined in the

probability space (WN ,B(WN),PW ) with PW =
∏N−1

k=0 Pw,k. When wk is not an

independent random process, we assume the stochasticity of W is directly available.
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We require the nonlinear function f to be Borel-measurable, which guarantees that

the state {x}Nk=1 is a random process by (2.17) [CT97, Sec. 1.4, Thm. 4]. Two special

cases of (2.17) are

1. affine-perturbed nonlinear time-varying systems,

xk+1 = gk(xk, uk) +wk (2.18)

where gk : X × U → X is a nonlinear function defined for k ∈ N[0,N−1], and

2. linear time-varying systems,

xk+1 = Akxk +Bkuk +wk (2.19)

where Ak ∈ Rn×n and Bk ∈ Rn×m are the time-varying state and input matrices

defined for k ∈ N[0,N−1]. For (2.19), the state space is X = Rn. For linear

systems of the form, xk+1 = Akxk + Bkuk + Fkvk for some random vector vk

and appropriately dimensioned matrix Fk, one can obtain (2.19) by defining the

disturbance random vector wk = Fkvk

The system (2.17) can be equivalently described by a controlled Markov process

with a stochastic kernel that is a time-varying Borel-measurable function Qk : B(X )×

X×U → [0, 1]. The stochastic kernel assigns a probability measure on the Borel space

(X ,B(X )) for xk+1, parameterized by the current state xk and current action uk ,

i.e., for any G ∈ B(X ), x ∈ X , and u ∈ U ,

Px {xk+1 ∈ G|xk = x, uk = u} = Pw,k {fk(x, u,wk) ∈ G} =

∫
G
Qk(dy|x, u). (2.20)
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By (2.20), for any bounded Borel-measurable h : X → R,

∫
X
h(y)Qk(dy|x, u) =

∫
X
h(fk(x, u, w))ψw,k(w)dw. (2.21)

In some cases, Qk may also be explicitly expressed in terms of ψw,k,

Qk(dy|x, u) =


ψw,k(y − gk(x, u))dy, for (2.18),

ψw,k(y − Akx−Bku)dy, for (2.19).

(2.22)

We define a Markov policy π = (µ0, µ1, . . . , µN−1) ∈ M as a sequence of universally

measurable state-feedback laws µk : X → U [Aba+08, Defn. 2]. The random vector

X = [x>1 x>2 . . . x>N ]>, defined in (XN ,B(XN),Px0,π
X ) has a probability measure

Px0,π
X defined using Qk [BS78, Prop. 7.45]. Borel-measurable functions are universally

measurable [BS78, Defn. 7.20].

2.5.2 General and Markov policies

We define a Markov policy π = (µ0, µ1, . . . , µN−1) ∈ M as a sequence of universally

measurable functions µk : X → U [Aba+08, Defn. 2][BS78, Defn. 8.4]. A Markov

policy is a current state-feedback control law since the control at time k is uk = µk(xk).

In stochastic optimal control literature, a more general class of policies is the class

of randomized and history-dependent policies [BS78, Defn. 8.4]. We refer to such

a policy as a general policy. For a general policy π′, the control at time k is given

by a stochastic kernel defined over U , parameterized by the history of the state and

control up to time k, (x0, u0, x1, . . . , uk−1, xk). Markov policies, by definition, are a

special class of general policies.

Under the policy π or π′, the concatenated state random vector X = [x>1 x
>
2 . . .

x>N ]> has a probability measure Px0,π
X or Px0,π′

X , respectively, induced from PW and

the system dynamics (2.17).
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2.5.3 Affine Feedback Controllers

We consider affine feedback controllers for discrete-time linear time-varying systems

(2.19). Affine disturbance feedback has been studied in the context of robust and

stochastic model predictive control [GKM06; Mes16; FGS16; Old+14; VT11]. An

affine disturbance feedback controller is given by

U = [u>0 u
>
1 . . . u>N−1]

>
= MW +D (2.23a)

M =



0 · · · · · · 0

M1,0 0
. . . 0

...
. . . . . .

...

MN−1,0 · · · MN−1,N−2 0


, D =



d0

d1

...

dN−1


(2.23b)

with the concatenated input vector U ∈ RmN , matrices Mi,j ∈ Rm×p, the affine

disturbance feedback gain matrix M ∈ RmN×pN , and affine disturbance feedback

controller bias D ∈ RpN . The structure of M ensures causality. From (2.23), the

input uk at time k depends only on the past disturbances, i.e.,

uk =
∑k−1

j=0
Mk,jwj + dk, ∀k ∈ N[1,N−1] (2.24)

Thus, an affine disturbance feedback controller is a non-randomized history-dependent

policy [BS78, Defn. 8.4], and the input at time k = 0, u0 = d0, is deterministic. We

still denote the control at k via bold-faced symbols to acknowledge that (4.2) is

analyzed at k = 0 with no information regarding the realization of the disturbances.

Consider the scenario where the concatenated disturbance random vector W =

[w>0 w
>
1 . . . w>N−1]

>
is a Gaussian random vector. Specifically, W ∼ N (µW , CW )

with µW ∈ RpN and CW ∈ RpN×pN ; CW is positive semi-definite, and PW denotes the

probability measure of W . Recall that affine transformations of Gaussian random

vectors are Gaussian [Gub06, Ch. 9.2]. For a matrix Γ ∈ Rny×(pN) (ny ∈ N) and
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vector ν ∈ Rny ,

W ∼ N (µW , CW )
Y =ΓW+ν−−−−−−→ Y ∼ N (µY , CY ) (2.25)

with µY = ΓµW + ν ∈ Rny and CY = ΓCWΓ> ∈ Rny×ny . Due to the linearity of the

system (2.19), we know that

X = Āx0 +HU + EW (2.26)

The matrices Ā, H, and E are obtained from (2.19) [SB10; VO18a]. By (2.23),

(2.25), and (2.26), we know that the concatenated state vectorX and U are Gaussian

random vectors. Specifically, for a fixed affine disturbance feedback controller (M,D),

we have

X ∼ N
(
µx0,M,D
X , CM

X

)
, (2.27a)

µx0,M,D
X = Āx0 +HD + (HM + E)µW , CMX = (HM + E)CW (HM + E)

>
(2.27b)

and

U ∼ N
(
µM,D
U , CM

U

)
, (2.28a)

µM,D
U = MµW +D, CM

U = MCWM
>
. (2.28b)

In other words, the probability measures Px0,M,D
X and PM,D

U associated with X and

U respectively, are induced from PW and the affine disturbance feedback controller

(M,D).

33



CHAPTER 2. PRELIMINARIES

Similarly, one can consider an affine state feedback controller,

U = K

 x0

X

+ V (2.29)

with a block lower-triangular state feedback gain matrix K ∈ RmN×(n+1)N and con-

troller bias vector V ∈ RmN . However, affine state feedback and affine disturbance

feedback parameterizations of the feedback controllers are equivalent, with straight-

forward linear transformations between the parameterizations [GKM06, Thm. 9].

Therefore, we will focus only on affine disturbance feedback controllers due to the

simplicity in (2.27) and (2.28).

Due to its affine nature, affine disturbance feedback controllers can not satisfy

hard control bounds when the disturbance is Gaussian (unbounded). In practice,

given a affine disturbance feedback controller, a nonlinear saturation function may be

imposed on the affine controller to satisfy the hard control bounds [Hok+12].
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Chapter 3

Forward Stochastic Reachability:
Theory and Computation

3.1 Introduction

This chapter discusses a new mathematical framework to predict the stochasticity

of the state of the system at a future time, given an initial state — the problem

of forward stochastic reachability. Specifically, we are interested in two properties

associated with the state of a given discrete-time stochastic system at a future time

of interest:

1. its associated probability measure (the forward stochastic reach probability

measure) or density, and

2. its support, the smallest closed set that covers all the reachable states (the

forward stochastic reach set).

These properties, illustrated in Figure 1.3, help us answer questions of the form: what

is the likelihood that the system at a future time of interest will lie in a target set? Is

there a non-zero likelihood of the state lying in a given collection of states at a future

time of interest?

We discuss a grid-free approach that relies on Fourier transforms and computa-
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tional geometry, and scales well with system dimension and time. We are motivated

by the problem of autonomous surveillance and stochastic motion planning. We show

that the problem of capturing a stochastic target using a controlled robot with deter-

ministic dynamics can be formulated as a convex optimization problem for tractable,

globally optimal solutions. For avoiding rigid-body obstacles with stochastic dynam-

ics, we define probabilistic occupancy functions which help us reason about collision

probability. The superlevel sets of these functions characterize the keep-out sets for

probabilistic safety. We discuss sufficient conditions under which these keep-out sets

are convex and compact, enabling computationally efficient and grid-free algorithms

to characterize these sets using convex optimization. In this thesis, we will restrict

our discussion to forward stochastic reachability analysis of linear systems. These

results have been extended to Markov jump linear systems in [VO18a].

3.2 Related Work

Note that the forward stochastic reach probability density and reach set have been

analyzed separately in control theory literature, for some special cases. For Gaussian-

perturbed linear systems, the probability measure at a future time of interest can be

obtained from the prediction steps of a Kalman filter [DCA94]. However, this ap-

proach fails to generalize for non-Gaussian disturbances, since it tracks only the first

two moments of the state. Similarly, for LTI systems with bounded disturbances,

established verification methods [Kva+15; KV06; Gir05] can be adapted to overap-

proximate the forward stochastic reachable set. However, these methods return a

trivial result with unbounded disturbances and do not address the forward stochastic

reach probability measure, which provides the likelihood of reaching a given set of

states. Alternatively, one can use grid-based dynamic programming approaches to

compute these quantities which do not scale well with system dimension [Aba+07].
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Our work in forward stochastic reachability is motivated by two applications —

the problems of capture of a stochastic target and motion planning under stochas-

tic uncertainty (Figure 1.3). The problem of pursuit of a dynamic, non-adversarial

target [Hol+09] is relevant in the rescue of a lost first responder in a building on

fire [KRS04], capture of a non-aggressive UAV in an urban environment [Gey08],

or other non-antagonistic situations. Solutions for an adversarial target, based in

a two-person, zero-sum differential game, can accommodate bounded disturbances

with unknown stochasticity [MT00; TLS00; Tom+03; BFZ10; Hua+15], but will be

conservative for a non-adversarial target. In this chapter, we seek scalable solutions

that synthesize an optimal controller for the non-adversarial scenario, by exploiting

the forward reachable set and probability measure for the target. We analyze the

convexity properties of the forward stochastic reach probability density and sets, and

propose a convex optimization problem to provide the exact probabilistic guarantee

of success and the corresponding optimal controller.

Stochastic motion planning problems [TBF05; LaV06] require planning a proba-

bilistically safe path for the navigation of a controllable robot in an environment with

multiple stochastically moving rigid body obstacles under bounded control author-

ity. Most approaches 1) quantify the collision probability, 2) characterize keep-out

regions, the set of states that should be avoided to ensure that the collision proba-

bility is below a desired threshold, and 3) generate dynamically-feasible trajectories

given a set of keep-out regions, to achieve desired properties like minimizing a perfor-

mance objective, staying within a safe region, and/or reaching a goal. The first two

steps are typically done together using either grid-based approaches [LaV06; TBF05;

Elf89; Ich+17; LGSP08; FSL07; BMGF10], chance constraints [BOW11; MW08;

Ono+15; LKH10; Aou+13; DTB11], or reachability [ASB09; Sum+11; HVO17;

WH12; Mal+17; Chi+15; Chi+17]. The last step may be performed using ex-

isting motion planning approaches, such as sampling-based approaches like RRT∗
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and PRM∗ [KF11; Mal+17; Chi+15; Chi+17] or optimization-based approaches like

mixed-integer linear programming [SFH02; HVO17], mixed-integer quadratic pro-

gramming [MKK12], and successive convexification [Mao+17]. This chapter provides

a grid-free, recursion-free, and sampling-free approach to quantify the collision prob-

ability and characterize the keep-out sets through the definition of probabilistic oc-

cupancy function and α-probabilistic occupied sets. The α-probabilistic occupied sets

characterizes the keep-out regions to attain a desired probabilistic safety. We pro-

pose sufficient conditions for the convexity and compactness of these sets, enabling

computationally efficient algorithms.

Grid-based approaches query an occupancy grid [Elf89; TBF05; LaV06] to assess

the collision probability. The occupancy grid may be updated using probabilistic ve-

locity obstacles [FSL07], probabilistic inevitable collision state [BMGF10], or by sam-

pling [Ich+17; LGSP08]. Sampling-based approaches (Monte-Carlo simulations) are

popular since they can accommodate rigid body obstacles with nonlinear dynamics.

This versatility comes at a high computational cost when high-quality approximations

are desired [LGSP08; CC06], although importance sampling and the parallelization

has improved the computational tractability [Ich+17].

Chance constraints have also been used to plan trajectories for a Gaussian

disturbance-perturbed robot navigating an environment with static polytopic ob-

stacles [BOW11; MW08; Ono+15], and extended to obstacles that translate (no

rotation) according to a Gaussian process [LKH10; Aou+13]. These approaches re-

place the probabilistic safety constraints with tighter deterministic constraints that

the motion planner must satisfy, and hence are conservative. The probabilistic colli-

sion avoidance constraint in [DTB11] for spherical rigid body robot and the obstacles

with Gaussian disturbances was formulated as an integral, and an approximation of

the keep-out region was provided.

The third approach is to use backward stochastic reachability via dynamic pro-
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gramming, to compute the inevitable collision states [Mal+17; Chi+15]. However,

these approaches suffer from the curse of dimensionality [Aba+08; Sum+11]. Re-

searchers have proposed particle filters [BOW11; LOE13] and approximate dynamic

programming [Kar+14] to improve the computational tractability.

3.3 Problem Statements

This chapter develops the forward stochastic reachability tools to analyze linear dy-

namics.

Problem 1. Characterize the forward stochastic reachability for linear dynamics

(2.19), i.e., construct analytical expressions for

1. the smallest closed set that covers all the reachable states (i.e., the forward

stochastic reach set).

2. the probability measure over the forward stochastic reach set (i.e., the forward

stochastic reach probability measure)

We will also define a forward stochastic reach probability density, and provide

sufficient conditions under which the forward stochastic reach set is convex, and the

forward stochastic reach probability density and measure are log-concave. Problem 1

is illustrated in Figure 1.3.

For rigid body obstacles with linear dynamics, we will use forward stochastic

reachability to define a probabilistic occupancy function and the α-probabilistic oc-

cupied set for a given time of interest. We will seek grid-free, recursion-free, and

computationally efficient algorithms to compute the α-probabilistic occupied set by

exploiting known results to approximate convex and compact sets.

Problem 2. Provide algorithms to approximate the α-probabilistic occupied set (α ∈

[0, 1]) for a rigid body obstacle with linear dynamics:
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1. projection-based tight polytopic approximation, and

2. Minkowski sum-based overapproximation.

Problem 2.a. Provide sufficient conditions under which the α-probabilistic occupied

set of a rigid body obstacle with linear dynamics is convex and compact.

To address Problem 2.a, we will provide sufficient conditions under which the

probabilistic occupancy function is upper semi-continuous and log-concave, and the

α-probabilistic occupied set is convex, closed, and bounded.

Finally, we demonstrate the developed theory on two applications — stochastic

target capture using forward stochastic reachability (experimentally validated) and

stochastic motion planning using α-probabilistic occupied set and successive convex-

ification [Mao+17].

3.4 Forward Stochastic Reachability

Forward stochastic reachability of a system characterizes the stochasticity of the state

of a given stochastic system at a future time of interest. It provides the probability

measure associated with the state, known as the forward stochastic reach probability

measure, and the support of the state, known as the forward stochastic reach set, at

the time of interest.

3.4.1 Forward Stochastic Reachability for Linear Systems

Definitions

Consider the linear system (2.19) initialized to x0 and a known open-loop controller

UN−1 = [u>0 u>1 . . . u>N−1]
> ∈ UN (a zero vector if (2.19) under study is uncontrolled).

Recall that the random vector wk belongs to the probability space (W ,B(W),Pw,k),

with W ⊆ Rp as the support of wk. Due to the additive disturbance wk, the state
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xτ at time τ is a random vector. Here, the forward stochastic reach probability

measure is the probability measure of xτ Pτ,x0,Uτ−1
x and the forward stochastic reach

set FSRset(τ, x̄0, U τ−1) is the support of xτ respectively. If a non-negative Borel

function ψx(z; τ, x0, U τ−1) exists, such that
∫
X ψx(z; τ, x0, U τ−1)dz = 1, and for any

GX ∈ B(X ),

Pτ,x0,Uτ−1
x {xτ ∈ GX} =

∫
GX
ψx(z; τ, x0, U τ−1)dz. (3.1)

then ψx(z; τ, x0, U τ−1) is the forward stochastic reach probability density of the linear

system (2.19).

We compactly write the state xτ at a time of interest τ ≥ 1 as an affine transfor-

mation of wτ−1 , [w>0 w
>
1 . . . w>τ−1]

>
by separating the elements that evolve under

the influence of the stochastic disturbance from those that evolve deterministically.

Defining xnodist(τ ;U τ−1, x0) as the unperturbed state (disturbance free), we have

xτ = A (0, τ)x0 + CU(τ)U τ−1︸ ︷︷ ︸
xnodist(τ ;Uτ−1,x0)

+CW (τ)wτ−1 (3.2)

Here, the matrices A , CU , and CW are given in (3.3), and are inspired from [SB10,

eq. (3)],

A (i, j) =

(
j−1∏
k=i

Ak

)
∈ Rn×n, with A (i, i) = In, and i, j ∈ N, i < j (3.3a)

CU(τ) = [A (1, τ)B0 A (2, τ)B2 . . . A (τ, τ)Bτ−1] ∈ Rn×(mτ), (3.3b)

CW (τ) = [A (1, τ) A (2, τ) . . . A (τ, τ)] ∈ Rn×(pτ). (3.3c)

Theorem 1. (Forward stochastic reach probability measure characteriza-

tion) For any time instant τ ∈ N[1,N ] and some Borel set GX ∈ B(X ), the forward
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stochastic reach probability measure Pτ,x0,Uτ−1
x of the linear system (2.19) is given by

Pτ,x0,Uτ−1
x {xτ ∈ GX} = Pτ−1

w

{
CW (τ)wτ−1 ∈

(
GX ⊕

{
−xnodist(τ ;U τ−1, x0)

})}
.

Proof: Follows from (3.2).

Lemma 1. Given τ ∈ N[1,N ], supp(CW (τ)wτ−1) = CW (τ)Wτ .

Proof: Let the singular value decomposition of CW (τ) ∈ Rn×(pτ) be PΣCQ
>,

where P ∈ Rn×n and Q ∈ R(pτ)×(pτ) are unitary matrices and ΣC ∈ Rn×(pτ) is a

diagonal (typically non-square) matrix containing its singular values.

Consider supp(Pa) for some n-dimensional random vector a with support

supp(a). By (2.8),

supp(Pa) = {y : ∀r > 0,PPa{Pa ∈ Ball(y, r)} > 0}

= {y : ∀r > 0,Pa{a ∈ Ball(P−1y, r)} > 0} (3.4)

= {Pz : ∀r > 0,Pa{a ∈ Ball(z, r)} > 0} = P supp(a) (3.5)

Here, (3.4) follows from [Bil95, Thm. 12.2], while (3.5) follows from the fact that P

is a unitary matrix (|det(P )| = 1) and by the change of variables, Pz = y. Simi-

larly, supp(Q>b) = Q>supp(b) for a (pτ)-dimensional random vector b with support

supp(b). Note that

ΣCb = (ΣC)non−zero,diag(b)non−zero,

where (ΣC)non−zero,diag is a diagonal square “submatrix” of ΣC that collects all the non-

zero diagonal entries of ΣC , and (b)non−zero is a random vector constructed from the

associated components of the random vector b. By arguments similar to (3.5), we have

supp(ΣCb) = ΣCsupp(b). Therefore, supp(CW (τ)wτ−1) = PΣCQ
>supp(wτ−1) =

CW (τ)(supp(wk))
τ since supp(wτ−1) = (supp(wk))

τ =Wτ .
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Remark 1. For a random process {wk} with time-varying support Wk,

supp(CW (τ)wτ−1) = CW (τ)(W0 × W1 × . . . × Wτ−1), by similar arguments as in

Lemma 1.

Theorem 2. (Forward stochastic reach set characterization) For τ ∈ N[1,N ],

FSRset(τ, x̄0, U τ−1) = {xnodist(τ ;U τ−1, x0)} ⊕ CW (τ)Wτ .

Proof: Since FSRset(τ, x̄0, U τ−1) = supp(xτ ), we have

FSRset(τ, x̄0, U τ−1) =
{
z ∈ X : ∀r > 0, Pτ,x0,Uτ−1

x {xτ ∈ Ball(z, r)} > 0
}

= {z ∈ X : ∀r > 0,

Pτ−1
w {CW (τ)wτ−1 ∈ Ball(z − xnodist(τ ;U τ−1, x0), r)} > 0

}
=
{
y = z − xnodist(τ ;U τ−1, x0) : ∀r > 0,

Pτ−1
w {CW (τ)wτ−1 ∈ Ball(y, r)} > 0

}
.

Hence, FSRset(τ, x̄0, U τ−1) = supp(CW (τ)wτ−1)⊕{xnodist(τ ;U τ−1, x0)}. The proof is

completed by Lemma 1.

Remark 2. For any G ∈ B(X ), G ∩FSRset(τ, x̄0, U τ−1) = ∅ implies Pτ,x0,Uτ−1
x {xτ ∈

G} = 0 by (2.8).

Theorems 1 and 2 solve Problem 1. We define the dimension of the FSR set as

the dimension of its affine hull [BV04, Sec. 2.1.3]. By Theorem 2, we see that the

affine hull of the FSR set is contained in the column space of CW (τ), a subspace of X .

Recall that the column space is the range of the linear transformation CW (τ) [Str88,

Sec. 2.4]. Clearly, the FSR set is not full-dimensional when column rank of CW (τ)

is not n. In such cases, xt can also be represented as an affine transformation of a

lower-dimensional random vector which has a full-dimensional support.
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PDF of concatenated
disturbance vector ψw

CF of concatenated
disturbance vector Ψw

CF of
disturbance
vector Ψw

PDF of
disturbance
vector ψw

CF of state at time
τ Ψx(·; τ, U τ−1, x0)

FSR PDF
ψx(·; τ, U τ−1, x0)

IID noise
Ψw =

∏
Ψw

FT via (2.10)

FT via (2.10)

Affine transformation (3.2)

Inverse FT via (2.12)
or Levy’s inversion
theorem

Figure 3.1: Forward stochastic reachability (FSR) using Fourier transforms. Given
the probability density function (PDF) of a random vector, we can compute its char-
acteristic function (CF) via Fourier transforms (FT). The dotted lines show how the
approach simplifies further, when IID assumption is in place.

3.4.2 Forward Stochastic Reach Probability Density via Fou-
rier Transforms

We have the forward stochastic reach probability density via Theorem 1 and (3.1).

We can also use Fourier transforms to compute the probability density function

ψx(z; τ, x0, U τ−1).

By (2.11), the characteristic function of xτ , denoted by Ψx

(
η; τ, U τ−1, x0

)
, may

be obtained from the characteristic function of wτ , denoted by Ψx

(
η; τ, U τ−1, x0

)
,

Ψx

(
η; τ, U τ−1, x0

)
= ejη

>xnodist(τ ;Uτ−1,x0)Ψw

(
CW (τ)>η; τ

)
(3.6)

with Fourier variable η ∈ Rn [VHO17, Sec. 2.1]. The forward stochastic reach

probability density can be obtained from (3.6) using Levy’s inversion theorem. Al-

ternatively, we can use inverse Fourier transform (2.12), if the density is absolutely

integrable, square integrable, or Schwartz. Figure 3.1 shows the Fourier transform

approach to compute the forward stochastic reach probability density.

3.4.3 Convexity Properties

Understanding the convexity properties of the forward stochastic reach probability

measure and density is useful for tractability. Many standard distributions are log-
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concave, including Gaussian, uniform, and exponential distributions [BV04, e.g. 3.39,

3.40].

Lemma 2. (Log-concave forward stochastic reach probability measure) If

Pw is a log-concave probability measure, then the forward stochastic reach probabilty

measure Pτ,x0,Uτ−1
x is log-concave over X for ∀τ ∈ N[1,N ].

Lemma 3. (Convex forward stochastic reach set and log-concave proba-

bility density)

a. Log-concave probabilty measure Pτ,x0,Uτ−1
x ⇒ convex FSRset(τ, x̄0, U τ−1).

b. Log-concave probabilty measure Pτ,x0,Uτ−1
x and a full-dimensional FSR set

FSRset(τ, x̄0, U τ−1) ⇔ log-concave probabilty density ψx(z; τ, x0, U τ−1).

Lemma 2 follows from Theorem 1 and [DJD88, Lem. 2.1], and Lemma 3 follows

from [DJD88, Thms 2.5 and 2.8].

3.5 Applications to Obstacle Avoidance

3.5.1 Properties of a Rigid Body

To simplify analysis, we make the following assumptions (for the discussion in this

chapter).

Assumption 1. The rigid body shape is a Borel set and has a non-zero Lebesgue

measure.

Assumption 2. The rigid bodies are only allowed to translate.

Assumption 1 is typically satisfied by real-world problems since open and closed

sets are Borel [Rud87, Sec. 1.11], and rigid body obstacle shapes are sets with pos-

itive “volume”. While Assumption 2 is common practice in motion planning prob-

lems [LaV06, Sec. 4.3.2] [Aou+13], it excludes analysis of rigid body obstacles whose
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shape has a state-dependent orientation, for example, a unicycle obstacle with a non-

centrally symmetric bounded shape that depends on the obstacle’s heading. However,

by defining an overapproximative shape (that is Borel) that encompasses all attain-

able shapes, rigid body obstacles that do have state-dependent orientation can be

accommodated. For the unicycle obstacle, we can use a large ball that contains the

obstacle irrespective of the heading.

We define the set of states “occupied” by the rigid body obstacle given the state

of some point in the obstacle (say, center of mass) is c ∈ X as

O(c) = {z ∈ X : hobs(z − c) ≥ 0} ⊆ X (3.7)

using the zero super-level set of a known Borel-measurable function hobs : X → R.

Note that (3.7) is a direct consequence of Assumption 2, since now we can decouple

the obstacle geometry from its dynamics. Specifically, the obstacle shape can not be

distorted due to its rigidity, and due to absence of rotation, O(c) describes the set of

occupied states based on the position. For example, we define hobs(z) = 1
2
−‖z‖∞ for

an obstacle whose shape is an axis-aligned hyperbox Box(c, 1) and define hobs(z) =

1− ‖z‖2 for an obstacle whose shape is a unit sphere Ball(c, 1).

Lemma 4. For an obstacle shape O(y) with y ∈ X ,

a. (translation invariance) O(y) = {y} ⊕ O(0),

b. −O(−y)) = {z ∈ X : y ∈ O(z)}, and

c. 1(−O(−y))(z) = 1O(0)(y − z).

Proof: To show a), define z′ = z− y. From (3.7), we have O(y) = {z′+ y ∈ X :

h(z′) ≥ 0} = {y} ⊕ {z : h(z) ≥ 0} = {y} ⊕ O(0).
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Next, we show b) and c). Consider y, z ∈ X such that z ∈ (−O(−y)).

z ∈ (−O(−y))⇐⇒ −z ∈ O(−y)

⇐⇒ hobs(−z − (−y)) ≥ 0

⇐⇒ hobs(y − z) ≥ 0 (3.8)

⇐⇒ y ∈ O(z) (3.9)

⇐⇒ y ∈ {z} ⊕ O(0)

⇐⇒ (y − z) ∈ O(0). (3.10)

Equation (3.9) shows b), and (3.10) shows c).

Lemma 4 provides some useful properties of the set O(c) independent of the geometric

properties of the rigid body like closedness, convexity, and boundedness. Moreover,

Lemma 4a shows that it is sufficient to impose geometric restrictions only on O(0),

due to Assumption 2.

The obstacle shape O(0) is centrally symmetric set if O(0) = −O(0) [DJD88, Sec.

2.1]. Here, (−O(c)) is the reflection of set O(c) about origin,

−O(c) = {z ∈ X : −z ∈ O(c)} = −InO(c). (3.11)

We will now apply the developed forward stochastic reachability methods to define

a probabilistic occupancy functions and the α-probabilistic occupied set for rigid

body obstacles that have linear dynamics. Table 3.1 summarize the results for the

probabilistic occupancy function and the α-probabilistic occupied sets discussed in

this section.
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Probabilistic
occupancy function
φx(y; τ, U τ−1, x0, hobs)

α-probabilistic occupied set
PrOccupySet(α; τ, U τ−1, x0, hobs)

Obstacle dynamics Linear (2.19)

Definition
(3.12)–(3.18),
Proposition 1

(3.19)

Log-concavity /
convexity

Proposition 2

Upper semi-
continuous /
closedness

Proposition 4

Boundedness - Proposition 5
Compactness - Theorem 3

Table 3.1: Properties of the probabilistic occupancy function and α-probabilistic
occupied set established in Section 3.5

3.5.2 Probabilistic Occupancy Function

To define collision, we consider a rigid body robot with shape R(0) ⊆ X which also

satisfies Assumptions 1 and 2. We are motivated by [LaV06, Sec. 4.3.2], where the

safety of a trajectory is defined in the configuration space. The configuration space

encodes the set of transformations that can be applied to a collection of bodies, and it

is a state subspace [LaV06, Ch. 7]. Given a collection of obstacles, all configurations

in collision with any of the obstacles are removed, and a safe trajectory must exist

solely in the remaining space, also known as the free space. In the case of stochastic

obstacles, the free space becomes a random set [Sum+11], and the safety probability

is the probability of a trajectory staying within this random set.

Alternatively, we see that the probability of collision between the rigid body ob-

stacle and the rigid body robot is equivalent to the probability of collision between

the robot with exactly same dynamics but shape reduced to a point and the obstacle

with an augmented shape O(0)⊕ (−R(0)). This motivates the definition of collision

probability, Definition 1, using the probability with which the obstacle “occupies” the

state of the point robot. Without loss of generality, we assume the robot shape is a
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point and O(0) is the appropriately augmented obstacle shape in the sequel.

Definition 1. A collision is said to occur between a robot and an obstacle, if the

robot, described now by a point mass, has the state z ∈ X , the obstacle has state

c ∈ X , and z ∈ O(c), where O(·) is now the augmented obstacle shape.

Consider an obstacle with linear dynamics (2.19) initialized to x0 and (if nec-

essary) an known open-loop controller UN−1. The obstacle shape O(0) is defined

by hobs : X → R (see (3.7)). We can define probabilistic occupancy function

φx(y; τ, U τ−1, x0, hobs) : X → [0, 1] using Lemma 4b as,

φx(y; τ, U τ−1, x0, hobs) = Pτ,x0,Uτ−1
x {xτ ∈ {z ∈ X : y ∈ O(z)}} (3.12)

= Pτ,x0,Uτ−1
x {xτ ∈ (−O(−y))} . (3.13)

Separately from (3.12) and (3.13), φx can also be defined:

1. using Lemma 4a,

φx(y; τ, U τ−1, x0, hobs) = Pτ,x0,Uτ−1
x

{
xτ ∈ −

(
{−y} ⊕ −O(0)

)}
= Pτ,x0,Uτ−1

x

{
xτ ∈

(
{y} ⊕ −O(0)

)}
(3.14)

= Pτ,x0,Uτ−1
x

{
(y − xτ ) ∈ O(0)

}
(3.15)

2. using expectations (Pτ,x0,Uτ−1
x {xτ ∈ GX} = Eτ,x0,Uτ−1

x [1GX (xτ )]),

φx(y; τ, U τ−1, x0, hobs) = Eτ,x0,Uτ−1
x

[
1O(0)(y − xτ )

]
(3.16)
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3. using convolution (see [HVO17]): By (3.16) and Lemma 4c,

φx(y; τ, U τ−1, x0, hobs) =

∫
X
ψx(z; τ, x0, U τ−1)1O(0)(y − z)dz (3.17)

= [ψx ∗ 1O(0)](y). (3.18)

We obtain a simpler description of φx for centrally symmetric obstacles, which

follows from (3.11) and (3.15).

Proposition 1. (φx under central symmetry) For a centrally symmetric rigid

body obstacle, the probabilistic occupancy function is given by

φx(y; τ, U τ−1, x0, hobs) = Pτ,x0,Uτ−1
x {xτ ∈ O(y)}.

3.5.3 α-Probabilistic Occupied Set

Given α ∈ R, α ≥ 0, the α-probabilistic occupied set is

PrOccupySet(α; τ, U τ−1, x0, hobs) = {y ∈ X : φx(y; τ, U τ−1, x0, hobs) ≥ α} (3.19)

From (3.19), we have ∀τ ∈ N[1,N ] and ∀α′ ∈ R, α ≤ α′,

PrOccupySet(α; τ, U τ−1, x0, hobs) ⊇ PrOccupySet(α′; τ, U τ−1, x0, hobs). (3.20a)

PrOccupySet(α; τ, U τ−1, x0, hobs) =


X , α = 0

∅, α > φx(ymax; τ, ·)
(3.20b)

where ymax ∈ X is the maximizer of φx(y; τ, U τ−1, x0, hobs). Equation (3.20b) fol-

lows from the fact that ∀τ ∈ N[1,N ], φx(y; τ, U τ−1, x0, hobs) is non-negative, and

φx(ymax; τ, ·) ≥ φx(y; τ, U τ−1, x0, hobs), ∀y ∈ X . By definition, φx(ymax; τ, ·) ≤ 1.
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3.5.4 Properties of Probabilistic Occupancy Function and α-
Probabilistic Occupied Set

Proposition 2. (Log-concave φx and convex PrOccupySet) If Pw is log-concave

over W and O(0) is convex, then φx(y; τ, U τ−1, x0, hobs) is log-concave over y ∀τ ∈

N[1,N ]. Moreover, PrOccupySet(α; τ, U τ−1, x0, hobs) is convex ∀α ∈ R.

Proof: From Lemma 2, we know the forward stochastic reach probabilty measure

Pτ,x0,Uτ−1
x is log-concave under these conditions. Note that the set −O(0) is convex

sinceO(0) is convex and convexity is preserved under linear transformation (see (3.11)

and [BV04, Sec. 2.3.2]). Using the definition (3.14) and property (2.9), we conclude

that φx(y; τ, U τ−1, x0, hobs) is log-concave over y ∈ X ∀τ ∈ N[1,N ].

The set PrOccupySet(α; τ, U τ−1, x0, hobs) is convex since log-concave functions are

quasiconcave [BV04, Sec. 3.5].

Proposition 2 provides the conditions under which the computation of ymax may be

posed as an unconstrained log-concave optimization problem, which may be tractably

solved when φx is given. Alternatively, we can avoid the computation of ymax com-

pletely by using Proposition 3 for centrally symmetric disturbances, like a zero-mean

Gaussian disturbance.

Proposition 3. (ymax under symmetry) If Pw is centrally symmetric and log-

concave, and O(0) is centrally symmetric and convex, then ymax = xnodist(τ ;U τ−1, x0).

Proof: For every y ∈ X , we define yshift = y − xnodist(τ ;U τ−1, x0) ∈ X , and

` : X → [0, 1],

`(yshift) , φx(xnodist(τ ;U τ−1, x0) + yshift; τ, ·) = φx(y; τ, U τ−1, x0, hobs). (3.21)

We will show that I) `(yshift) is even in yshift ∈ X , II) `(yshift) is log-concave in

yshift ∈ X , and III) 0 is the maximizer of ` since it is log-concave and even. Using
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III), `(0) ≥ `(yshift) ≡ φx(xnodist(τ ;U τ−1, x0); τ, ·) ≥ φx(y; τ, U τ−1, x0, hobs) for all

yshift ∈ X and the corresponding y, which completes the proof.

Part I) ` is even over yshift: SinceO(0) is centrally symmetric, we use Proposition 1

to define φx(y; τ, U τ−1, x0, hobs). By definition of `(·),

`(yshift) = Pτ,x0,Uτ−1
x {xτ ∈ O(xnodist(τ ;U τ−1, x0) + yshift)}

= Pτ,x0,Uτ−1
x {xτ ∈ O(0)⊕ {xnodist(τ ;U τ−1, x0) + yshift}} (3.22)

= Pτ−1
w {CW (τ)wτ−1 ∈ O(0)⊕ {yshift}} (3.23)

= Pτ−1
w {CW (τ)wτ−1 ∈ −(O(0)⊕ {yshift})} (3.24)

= Pτ−1
w {CW (τ)wτ−1 ∈ O(0)⊕ {−yshift}} = `(−yshift). (3.25)

where (3.22) follows from Lemma 4a, (3.23) follows from (3.2), (3.24) follows from

the fact that Pτ−1
w is a centrally symmetric probability measure, and (3.25) follows

from the fact that O(0) is a centrally symmetric set and the definition of `(yshift) in

(3.23).

Part II) ` is log-concave over yshift: From Proposition 2, we know that

log (φx(y; τ, U τ−1, x0, hobs)) is concave in y. Since composition of a concave function

with an affine function preserves concavity [BV04, Sec. 3.2.2], `(yshift) is log-concave.

Part III) 0 is the maximizer of `: By definition of log-concavity, `(0) ≥√
`(yshift)`(−yshift), ∀yshift ∈ X [BV04, Sec. 3.5.1]. Since ` is non-negative and

`(yshift) is even in yshift, we have `(0) ≥ `(yshift), ∀yshift ∈ X .

Recall that upper semi-continuous functions are functions with closed superlevel

sets (see Section 2.2.2).

Proposition 4. (Upper semi-continuous φx and closed PrOccupySet) If O(0)

is closed, then ∀τ ∈ N[1,N ], φx(y; τ, U τ−1, x0, hobs) is upper semi-continuous, and

PrOccupySet(α; τ, U τ−1, x0, hobs) is closed ∀α ∈ R.

Proof: For every sequence yi → y, we need to show that

52



CHAPTER 3. FORWARD STOCHASTIC REACHABILITY: THEORY AND COMPUTATION

lim supi→∞ φx(yi; τ, U τ−1, x0, hobs) ≤ φx(y; τ, U τ−1, x0, hobs). By (3.16), this is equiv-

alent to showing lim supi→∞ Eτ,x0,Uτ−1
x

[
1O(0)(yi − xτ )

]
≤ Eτ,x0,Uτ−1

x

[
1O(0)(y − xτ )

]
.

Since O(0) is closed, the function 1O(0)(y) is upper semi-continuous in y. The

function −1O(0)(y − z) is l.s.c in y, z since −1O(0)(y) is l.s.c and y − z is continuous

in y, z [RW09, Ex. 1.4]. Therefore, the function f : X 2 → {0, 1} with f(y, z) =

1− 1O(0)(y− z) is lower semi-continuous in y and z. Specifically, lim infi→∞f(yi, z) ≥

f(y, z) for any z. Using [Rud87, Thm. 1.12d], we also conclude that f is Borel-

measurable in y and z. By construction, f(yi,xτ ), f(y,xτ ) is non-negative (point-

wise). Hence, by Fatou’s lemma [CT97, Sec. 6.2, Thm. 2.1], the fact that f is l.s.c,

Borel-measurable, and non-negative, and linearity of the expectation operator, we

have

lim inf
i→∞

Eτ,x0,Uτ−1
x [f(yi,xτ )] ≥ Eτ,x0,Uτ−1

x

[
lim inf
i→∞

f(yi,xτ )
]
≥ Eτ,x0,Uτ−1

x [f(y,xτ )]

∴ lim sup
i→∞

Eτ,x0,Uτ−1
x

[
1O(0)(yi − xτ )

]
≤ Eτ,x0,Uτ−1

x

[
1O(0)(y − xτ )

]
.

Closedness of PrOccupySet(α; τ, U τ−1, x0, hobs) follows from the upper

semi-continuity of φx(y; τ, U τ−1, x0, hobs) and (3.19).

Proposition 5. (Bounded PrOccupySet) If O(0) is bounded, then

PrOccupySet(α; τ, U τ−1, x0, hobs) is bounded for every α > 0 and τ ∈ N[1,N ].

Proof: Let b, b0 ∈ R. Consider some y ∈ X such that y ∈

PrOccupySet(α; τ, U τ−1, x0, hobs) ⇒ φx(y; τ, U τ−1, x0, hobs) > α. We need to show

that for every unit vector d ∈ X , there exists b0 > 0 such that φx(y+ bd; τ, ·) < α for

all b > b0.

Assume, for contradiction, that there is one unit vector dc ∈ X for which no such

b0 exists, or equivalently, for every b > 0, φx(y + bdc; τ, ·) ≥ α.

Since O(0) is compact, there exists a ball Ball(0, r) centered at origin with radius

r ∈ R, r > 0 such that −O(0) ⊂ Ball(0, r). From Lemma 4a, −O(−(y + bdc)) ⊂
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Ball(y + bdc, r) for any b > 0. Given α > 0, there exists Nα ∈ N \ {0} such that

αNα > 1 (Archimedean property [Tao06a, Corr. 5.4.13]). We define Γb = {iR : i ∈

N[1,Nα]} ⊂ R where R > 2r which is a collection of Nα options for b. By our choice

of R, for any b1, b2 ∈ Γb, b1 6= b2, the sets Ball(y + b1dc; r) and Ball(y + b2dc; r) are

distinct, and thereby the sets −O(−(y + b1dc)) and −O(−(y + b2dc)) are distinct.

Construct a Borel set GX = ∪b∈Γb(−O(−(y+ bdc))), a union of mutually disjoint sets.

Hence, Pτ,x0,Uτ−1
x {xτ ∈ GX} =

∑
i∈Γb

Pτ,x0,Uτ−1
x {xτ ∈ (−O(−(y+bdc)))}. From (3.13),

our assumption on dc, and the definition of Nα, we have

Pτ,x0,Uτ−1
x {xτ ∈ GX} =

∑
i∈Γb

φx(y + bidc; τ, ·) ≥ Nαα > 1

which leads to a contradiction, completing the proof.

We utilize the Heine-Borel theorem and summarize the results from Proposi-

tions 2, 4, and 5 as Theorem 3. Theorem 3 addresses Problem 2.a.

Theorem 3. (Compact and convex PrOccupySet) If Pw is log-concave over W

and O(0) is convex and compact, then PrOccupySet(α; τ, U τ−1, x0, hobs) is a convex

and compact set for all α > 0 and ∀τ ∈ N[1,N ].

3.5.5 Polytopic approximation of convex and compact set via
projection

We revisit a well-known projection-based approach to compute the polytopic over- and

underapproximation of an arbitrary convex and closed set [BV04, Ex. 2.25] [Web94,

Ch. 2],

L(β) = {y ∈ Rn : f(y) ≥ β} ⊆ Rn (3.26)

for a known upper semi-continuous and quasiconcave function f : Rn → R and

known β ∈ R. See Section 2.2.2 for the definitions of upper semi-continuity and
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quasiconcavity. Let the maxima of f be larger than β, i.e., L(β) is non-empty. The

difference between this approach and the ray shooting algorithm (see Figure 2.1) is

the way the boundary points are discovered.

Given K > 0 points external to L(β), pi ∈ Rn \ L(β), i ∈ N[1,K]. We project pi

onto L(β) by solving (3.27) for each i ∈ N[1,K] [BV04, Sec. 8.1],

minimize
y∈Rn

‖y − pi‖2

subject to f(y) ≥ β

. (3.27)

By construction, (3.27) is a convex optimization problem for each pi. Further, (3.27)

has a unique optimal solution [Web94, Thm. 2.4.1], and we denote this projection

point as PL(pi) ∈ L(β). We also associate a hyperplane (3.28) with each pi,

a>i (y − PL(pi)) ≤ 0 with ai = pi − PL(pi). (3.28)

Algorithm 2 solves (3.27) for every pi to compute two polytopes Linner(β;K) and

Louter(β;K),

Linner(β;K) = conv(PL(p1), . . . , PL(pK)), (3.29)

Louter(β;K) = ∩Ki=1{y ∈ Rn : a>i (y − PL(pi)) ≤ 0}. (3.30)

See Section 2.2.1 for the definition of convex hulls.

Algorithm 2 Tight polyhedral approximations of L(β) (3.26)

Input: upper semi-continuous and quasiconcave f , β ≤ maxy∈Rn f(y), K > 0, points
pi 6∈ L(β) for i ∈ N[1,K]

Output: Linner(β;K),Louter(β;K) s.t. Linner(β;K) ⊆ L(β) ⊆ Louter(β;K)
1: Solve (3.27) for every i ∈ N[1,K] to obtain PL(pi)
2: Compute Linner(β;K) using the convex hull as in (3.29)
3: Compute Louter(β;K) using the supporting hyperplanes as in (3.30)
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Lemma 5. For a convex, closed, and non-empty set L(β) and K points pi 6∈ L(β), i ∈

N[1,K], Algorithm 2 provides tight polytopic over- and underapproximation, i.e.,

Linner(β;K) ⊆ L(β) ⊆ Louter(β;K).

Proof: Approximation: The optimization problem (3.27) has a unique opti-

mal solution since L(β) is convex, closed, and non-empty [Web94, Thm. 2.4.1].

The hyperplane in (3.28) is the supporting hyperplane of L(β) at PL(pi) [BV04,

Sec. 2.5.2] [Web94, Thm. 2.4.1]. Note that the set of PL(pi) is a subset of the

extreme points of L(β) and the set of hyperplanes defined using (3.28) is a subset

of all the closed halfspaces containing L(β). Hence, we have Linner(β;K) ⊆ L(β) ⊆

Louter(β;K) [Web94, Thm 2.6.16, Corr. 2.4.8].

Tightness: Increasing the number of external points pi to K+ > K (while retaining

the previously used external points), we have by the same arguments [Web94, Thm

2.6.16, Corr. 2.4.8] as above,

Linner(β;K) ⊆ Linner(β;K+) ⊆ L(β) ⊆ Louter(β;K+) ⊆ Louter(β;K).

We thus have a monotone increasing sequence of polytopes in Linner and a mono-

tone decreasing sequence of polytopes in Louter with increasing K [CT97, Sec. 1].

Therefore,

lim
K→∞

Linner(β;K) = ∪∞K=1Linner(β;K) = L(β), and

lim
K→∞

Louter(β;K) = ∩∞K=1Louter(β;K) = L(β).

The computation of pi is easy when L(β) is bounded. For some y ∈ L(β), ∃r > 0

such that L(β) ⊆ Ball(y, r). We can now obtain the desired K points that lie outside

L(β) by sampling the surface of this ball, denoted by ∂Ball(y, r). For n ∈ {2, 3},
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we can uniformly discretize the boundary of a bounding circle/sphere respectively

to obtain pi. For higher dimensions, we obtain pi by sampling an appropriately

dimensioned standard normal distribution, and normalizing the samples to force it to

lie on the surface of the bounding hypersphere [HL10]. Computation of the bounding

radius r is equivalent to the computation of the diameter of a compact set [Web94,

Sec. 2.2], or may be set to a sufficiently large value.

3.5.6 Computation of the α-Probabilistic Occupied Set

We now address Problem 2 and compute approximations of PrOccupySet for a rigid

body obstacle with linear dynamics (2.19) initialized to x0 and UN−1. Unfortunately,

an exact, closed-form expression for φx is typically unavailable. To avoid calculating

(3.19) via a grid over the state space X , which is computationally expensive and

lacks scalability to higher dimensional systems, we propose two grid-free alternatives

to compute PrOccupySet,

1. projection-based tight polytopic approximation (Algorithm 3), and

2. Minkowski sum-based overapproximation (Algorithm 4).

In particular, we seek an overapproximation of φx so that we remain conservative

with respect to safety, i.e., avoiding the overapproximations of φx still provides the

desired safety guarantees. An underapproximation of the keep-out regions, when

available, provides insight on the degree of conservativeness. These algorithms are

recursion-free by the use of forward stochastic reachability via Fourier transforms (see

Section 3.4.2).

We can also split the computation of PrOccupySet into an offline and online

computation, using Proposition 6 which follows from (3.2), (3.15), and (3.19).

Proposition 6. (Effect of x0 on φx and PrOccupySet) Consider the linear system
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(2.19) initialized to x0 and UN−1. Then,

φx(y; τ, U τ−1, x0, hobs) = φx
(
y − xnodist(τ); τ, U τ−1, 0n×1, hobs

)
PrOccupySet(α; τ, U τ−1, x0, hobs)

= {xnodist(τ ;U τ−1, x0)} ⊕ PrOccupySet(α; τ, U τ−1, 0n×1, hobs)

Proposition 6 allows the computation of PrOccupySet(α; τ, U τ−1, 0n×1, hobs) be

done offline, and an online computation of its Minkowski sum with xnodist(τ ;U τ−1, x0),

which is the translation of PrOccupySet(α; τ, U τ−1, 0n×1, hobs) by xnodist(τ ;U τ−1, x0)

to obtain PrOccupySet(α; τ, U τ−1, x0, hobs). Proposition 6 can enable faster planning,

especially when solving motion planning problems in an environment with homoge-

neous rigid body obstacles with stochastic linear dynamics.

Projection-Based Tight Polytopic Approximation

From Theorem 3, we know the sufficient conditions under which PrOccupySet is

convex and compact. To compute tight polytopic approximations of PrOccupySet,

we replace the generic projection problem (3.27) with

minimize
y∈X

‖y − pi‖2

subject to log(φx(y; τ, U τ−1, x0, hobs)) ≥ log(α)

(3.31)

Problem (3.31) is also convex, as guaranteed by Proposition 2. Using Algorithm 2, we

obtain two polytopes UnPrOccupySet(α; τ, U τ−1, x0, hobs) and

OvPrOccupySet(α; τ, U τ−1, x0, hobs) such that

UnPrOccupySet(α; τ, U τ−1, x0, hobs) ⊆ PrOccupySet(α; τ, U τ−1, x0, hobs), and

OvPrOccupySet(α; τ, U τ−1, x0, hobs) ⊇ PrOccupySet(α; τ, U τ−1, x0, hobs).
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In addition, we use (3.20b) to simplify the computation. We summarize this approach

in Algorithm 3.

Algorithm 3 Projection-based tight polytopic approximations of
PrOccupySet(α; τ, U τ−1, x0, hobs)

Input: DPV with arbitrary w, threshold α ≥ 0, convex and compact rigid body
O(0), a desired number of samples K for Algorithm 2, bounding ball radius r > 0

Output: UnPrOccupySet(α; τ, U τ−1, x0, hobs),OvPrOccupySet(α; τ, U τ−1, x0, hobs)
1: ymax ← maxy∈X φx(y; τ, U τ−1, x0, hobs) . Use Prop. 3 when valid
2: if φx(ymax; τ, ·) ≤ α then
3: UnPrOccupySet(α; τ, U τ−1, x0, hobs),OvPrOccupySet(α; τ, U τ−1, x0, hobs) ← ∅

by (3.20b)
4: else if α > 0 then
5: Sample K points pi ∈ ∂Ball(ymax, r)
6: UnPrOccupySet(α; τ, U τ−1, x0, hobs),OvPrOccupySet(α; τ, U τ−1, x0, hobs) ←

Algorithm 2 with (3.31)
7: else
8: UnPrOccupySet(α; τ, U τ−1, x0, hobs),OvPrOccupySet(α; τ, U τ−1, x0, hobs)
← X by (3.20b)

9: end if

Minkowski Sum-Based Overapproximation

Consider the following set defined usingO(0) and a superlevel set of ψx(z; τ, x0, U τ−1),

PrOccupySet+(α; τ, U τ−1, x0, hobs)

=

{
z ∈ X : ψx(z; τ, x0, U τ−1) ≥ α

m(O(0))

}
⊕O(0). (3.32)

where m(O(0)) refers to the Lebesgue measure of the set O(0). Proposition 7 ensures

that PrOccupySet+(α; τ, U τ−1, x0, hobs) is an overapproximation of the α-probabilistic

occupied set.

Proposition 7. For any α ∈ R, α ≥ 0, τ ∈ N[1,N ] and a bounded forward stochastic

reach probabilty density ψx(z; τ, x0, U τ−1), PrOccupySet(α; τ, U τ−1, x0, hobs) ⊆

PrOccupySet+(α; τ, U τ−1, x0, hobs).
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Proof: Let y ∈ PrOccupySet(α; τ, U τ−1, x0, hobs) ⇒ φx(y; τ, U τ−1, x0, hobs) ≥ α.

Recall that for any two non-negative measurable functions f1, f2 such that f1(z) ≤

f2(z) for all z ∈ X , we have
∫
X f1(z)dz ≤

∫
X f2(z)dz [Tao06b, Prop. 19.2.6(c)]. By

(3.13),

α ≤ φx(y; τ, U τ−1, x0, hobs) =

∫
X
ψx(z; τ, x0, U τ−1)1(−O(−y))(z)dz

≤

(
sup

z∈(−O(−y))

ψx(z; τ, x0, U τ−1)

)
m (−O(−y)) . (3.33)

If the forward stochastic reach probabilty density ψx(z; τ, x0, U τ−1) is unbounded, the

upper bound given in (3.33) could be trivially∞. From Lemma 4a and [Bil95, Thms.

12.1 and 12.2], m (−O(−y)) = m
(
{y} ⊕ (−O(0))

)
= m

(
O(0)

)
. By Lemma 4b,

α ≤ φx(y; τ, U τ−1, x0, hobs)⇒

(
sup
y∈O(z)

ψx(z; τ, x0, U τ−1)

)
m
(
O(0)

)
≥ α.

By Assumption 1, m(O(0)) 6= 0. Hence, ∃z ∈ X such that y ∈ O(z) and

ψx(z; τ, x0, U τ−1) ≥ α
m(O(0))

. From Lemma 4a, y ∈ (O(0) ⊕ {z}) where z satisfies

the condition ψx(z; τ, x0, U τ−1) ≥ α
m(O(0))

, which completes the proof.

Equation (3.33) is the only overapproximation step in the proof of Proposition 7.

This inequality becomes tighter when the “variation” of ψx(z; τ, x0, U τ−1) in −O(−y)

becomes smaller. For example, when the set O(0) is contained in a relatively small

ball.

Recall that support functions may be used to characterize a convex and compact

set G ⊂ X [Web94, Thm. 5.6.4]. We denote the support function of G by ρ : X → X

ρ(l;G) = sup
y∈G

l
>
y, l ∈ Rn. (3.34)

For a Gaussian xτ ∼ N (µxτ ,Σxτ ) and some κ ∈ R, κ > 0, the κ-superlevel set of
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ψx(z; τ, x0, U τ−1) is an ellipsoid E(µxτ , Qxτ (κ)) [KV97, Defn. 2.1.4],

E(µxτ , Qxτ (κ)) ,
{
z ∈ X : (z − µxτ )

>(Qxτ (κ))−1(z − µxτ ) ≤ 1
}

(3.35)

with shape matrix Qxτ (κ) = −2 log
(
κ
√
|2πΣxτ |

)
Σxτ . From [KV97, Defn 2.1.4], we

have a closed form expression for the support function of ellipsoid (3.35) with some

positive definite Qxτ (κ) ∈ Rn×n,

ρ
(
l; E(µxτ , Qxτ (κ))

)
= l
>
µxτ +

√
l
>
Qxτ (κ)l. (3.36)

Thus, for a Gaussian xτ , (3.32) simplifies to

PrOccupySet+(α; τ, U τ−1, x0, hobs) = E
(
µxτ , Qxτ

(
α

m(O(0))

))
⊕O(0). (3.37)

The support function of the Minkowski sum of two non-empty, convex, and compact

sets is the sum of the respective support functions [Web94, Thm. 5.6.2]. Therefore, we

have a closed-form description of the support function of

PrOccupySet+(α; τ, U τ−1, x0, hobs),

ρ(l; PrOccupySet+(α; τ, U τ−1, x0, hobs)) = l
>
µxτ +

√
l
>
Qxτ

(
α

m(O(0))

)
l

+ ρ(l;O(0)). (3.38)

For a polytopic O(0) = {y ∈ Rn : Hy ≤ k} with appropriate H, k, ρ(l;O(0)) is solved

via a linear program given l [LGG09, Sec. 4.1]. For an ellipsoidal O(0) = E(0, QO)

with an appropriate QO ∈ Rn×n, ρ(l;O(0)) is given by (3.36). Alternatively, we can

use the ellipsoidal toolbox (ET) [GK] to compute ellipsoidal overapproximations of

PrOccupySet+(α; τ, U τ−1, x0, hobs), as Minkowski sums of ellipsoids need not be ellip-

soids [KV97, Pg. 97]. Note that PrOccupySet+(α; τ, U τ−1, x0, hobs) is an extension
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of the results in [DTB11] for arbitrary robot and obstacle rigid body shapes and

Gaussian-perturbed obstacle dynamics.

In general, given a support function, a tight polytopic overapproximation of

PrOccupySet+(α; τ, U τ−1, x0, hobs) can be found by “sampling” the direction vectors

l [LGG09, Prop. 3]. Specifically, using the support function of

PrOccupySet+(α; τ, U τ−1, x0, hobs) given in (3.38), we define a tight polytopic overap-

proximation

OvPrOccupySet+(α; τ, U τ−1, x0, hobs) = {y ∈ Rn : Adesy ≤ b} (3.39)

with Ndes > 0, Ades = [a>1 a>2 . . . a>Ndes
]
>

with ai ∈ Rn as the desired supporting

hyperplane directions, and b = [b1 b2 . . . bNdes
]> ∈ RNdes with

bi = ρ(ai; PrOccupySet+(α; τ, U τ−1, x0, hobs)), ∀i ∈ N[1,Ndes]. (3.40)

Here, tightness refers to the fact that the supporting hyperplanes of the polytope

OvPrOccupySet+(α; τ, U τ−1, x0, hobs), a>i y ≤ bi, support the set

PrOccupySet+(α; τ, U τ−1, x0, hobs). Algorithm 4 computes

OvPrOccupySet+(α; τ, U τ−1, x0, hobs) for a Gaussian xτ using Ades and (3.40). Al-

gorithm 4 does not require numerical quadrature like Algorithm 3, and works well

even when O(0) is contained in a relatively small ball.

For a non-Gaussian disturbance wk, the forward stochastic reach probabilty den-

sity may be obtained through Fourier transforms (see Section 3.4.2). We can then

utilize Algorithm 2 to compute a tight polytopic overapproximation of the level set of

the forward stochastic reach probabilty density and, if required, O(0). In this case,

the set PrOccupySet+(α; τ, U τ−1, x0, hobs) is the Minkowski sum of two polytopes,

which can be easily computed using the Multi-Parametric Toolbox (MPT3) [Her+13].
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Algorithm 4 Minkowski sum-based approximation of PrOccupySet for a Gaussian
forward stochastic reach probabilty density

Input: DPV with Gaussian disturbance w, threshold α ≥ 0, support function of the
rigid body ρ(l;O(0)), matrix of desired supporting hyperplane directions Ades

Output: OvPrOccupySet+(α; τ, U τ−1, x0, hobs)
1: ymax ← maxy∈X φx(y; τ, U τ−1, x0, hobs) . Use Prop. 3 when valid
2: if φx(ymax; τ, ·) ≤ α then
3: OvPrOccupySet+(α; τ, U τ−1, x0, hobs)← ∅ by (3.20b)
4: else if α > 0 then
5: for i ∈ N[1,Ndes] do
6: bi ← ρ(ai; PrOccupySet+(α; τ, U τ−1, x0, hobs)) by (3.38) and (3.40)
7: end for
8: OvPrOccupySet+(α; τ, U τ−1, x0, hobs)← {y ∈ Rn : Adesy ≤ b}
9: else

10: OvPrOccupySet+(α; τ, U τ−1, x0, hobs)← X by (3.20b)
11: end if

Remark 3. Proposition 6 holds true for the approximations

UnPrOccupySet(α; τ, U τ−1, x0, hobs), OvPrOccupySet(α; τ, U τ−1, x0, hobs),

PrOccupySet+(α; τ, U τ−1, x0, hobs), and OvPrOccupySet+(α; τ, U τ−1, x0, hobs).

Algorithms 3 and 4 can provide higher quality approximations at the cost of

computational time. For Algorithm 3, using more external points pi in Algorithm 2

(increasing K) based on UnPrOccupySet(α; τ, U τ−1, x0, hobs) can yield tighter overap-

proximations of PrOccupySet(α; τ, U τ−1, x0, hobs). For Algorithm 4, using a larger set

of direction vectors (more rows in Ades) tightens the overapproximation of

PrOccupySet+(α; τ, U τ−1, x0, hobs).
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3.6 Application: Stochastic Target Capture with

Experimental Validation

3.6.1 Problem Setup

We consider the problem of a controlled robot (R) having to capture a stochastically

moving non-adversarial target, denoted here by a goal robot (G). The robot R has

controllable linear dynamics while the robot G has uncontrollable linear dynamics,

perturbed by an absolutely continuous random vector. The robot R is said to capture

robot G if the robot G is inside a pre-determined set defined around the current

position of robot R. We seek an open-loop controller (independent of the current

state of robot G) for the robot R which maximizes the probability of capturing robot

G within the time horizon T . The information available to solve this problem are the

position of the robots R and G at t = 0, the deterministic dynamics of the robot R, the

perturbed dynamics of the robot G, and the density of the perturbation. We consider

a 2-D environment, but our approach can be easily extended to higher dimensions.

We perform the FSR analysis in the inertial coordinate frame.

We model the robot R as a point mass system discretized in time,

x̄R[t+ 1] = x̄R[t] +BRūR[t] (3.41)

with state (position) x̄R[t] ∈ R2, input ūR[t] ∈ U ⊆ R2, input matrix BR = TsI2 and

sampling time Ts. From (3.41),

x̄R[τ + 1] = x̄R[0] + (1̄1×τ ⊗BR)U τ , τ ∈ [0, T − 1] (3.42)

with the open-loop input vector U τ = [ū>R[τ − 1] ū>R[τ − 2] . . . ū>R[0]]
>

, U τ ∈ U τ ⊆

R(2τ).

We consider two cases for the dynamics of the robot G: 1) point mass dynamics,
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and 2) double integrator dynamics, both discretized in time and perturbed by an

absolutely continuous random vector. In the former case, we presume that the velocity

is drawn from a bivariate Gaussian distribution,

xG[t+ 1] = xG[t] +BG,PMvG[t] (3.43a)

vG[t] ∼ N (µ̄vG,ΣG). (3.43b)

The state (position) is the random vector xG[t] in the probability space (X , σ(X ),

Pt,x̄G[0]
xG ) with X = R2, disturbance matrix BG,PM = BR, and x̄G[0] as the known

initial state of the robot G. The stochastic velocity vG[t] ∈ R2 has mean vector µ̄vG

and covariance matrix ΣG. In the latter case, acceleration in each direction is an

independent exponential random variable,

xG[t+ 1] = AG,DIxG[t] +BG,DIa[t] (3.44a)

(a[t])x ∼ Exp(λax), (a[t])y ∼ Exp(λay) (3.44b)

AG,DI = I2 ⊗

 1 Ts

0 1

 , BG,DI = I2 ⊗

 T 2
s

2

Ts

 .
The state (position and velocity) is the random vector xG[t] in the probability space

(XDI, σ(XDI),Pt,x̄G[0]
xG ) with XDI = R4 and x̄G[0] as the known initial state of the robot

G. The stochastic acceleration a[t] = [(a[t])x (a[t])y]> ∈ R2
+ = [0,∞) × [0,∞) has

the following probability density and characteristic function (z̄ = [z1 z2]> ∈ R2
+ =

[0,∞)× [0,∞), ᾱ = [α1 α2]> ∈ R2),

ψa(z̄) = λaxλay exp (−λaxz1 − λayz2) (3.45)

Ψa(ᾱ) =
λaxλay

(λax − jα1)(λay − jα2)
. (3.46)

The characteristic function Ψa(ᾱ) is defined using Property P3 and the characteristic
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function of the exponential given in [Bil95, Section 26].

Formally, the robot R captures robot G at time τ if xG[τ ] ∈ CaptureSet(x̄R[τ ]).

In other words, the capture region of the robot R is the CaptureSet(ȳ) ⊆ R2 when

robot R is at ȳ ∈ R2. In other words, the capture probability is

CapturePrx̄R(τ, x̄R[τ ]; x̄G[0]) = Pτ,x̄G[0]
xG

{xG[τ ] ∈ CaptureSet(x̄R[τ ])} (3.47)

=

∫
CaptureSet(x̄R[τ ])

ψxG(ȳ; τ, x̄G[0])dȳ. (3.48)

We maximize the capture probability by considering the following optimization prob-

lem,

maximize CapturePrx̄R(τ, x̄R[τ ]; x̄G[0])

subject to

 τ ∈ [1, T ]

x̄R[τ ] ∈ ReachR(τ ; x̄R[0])

(3.49)

where the decision variables are the time of capture τ and the position of the robot

R x̄R[τ ] at time τ . From (3.42), we define the reach set for the robot R at time τ as

ReachR(τ ; x̄R[0]) =
{
ȳ ∈ X |∃U τ ∈ U τ s.t. x̄R[τ ] = ȳ

}
= ARx̄R[0] + (1̄1×τ ⊗BR)U τ .

(3.50)

Note that the original problem of designing an open-loop input vector U (·) is implicitly

enforced via the reach constraint (3.50). Several deterministic reachability computa-

tion tools are available for the computation of ReachR(τ ; x̄R[0]), like MPT [Her+13]

and ET [KV06].

By (2.9), Lemma 2, and (3.47), we know that CapturePrx̄R(τ, x̄R[τ ]; x̄G[0]) is log-

concave in x̄R[τ ] for every τ ∈ N[1,N ]. Further, ReachR(τ ; x̄R[0]) is a convex set by
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(3.50). Therefore, for any τ ∈ [1, T ],

minimize − log(CapturePrx̄R(τ, x̄R[τ ]; x̄G[0]))

subject to x̄R[τ ] ∈ ReachR(τ ; x̄R[0])
(3.51)

is convex with the decision variable x̄R[τ ]. Problem 3.51 is an equivalent convex opti-

mization problem of the partial maximization with respect to x̄R[τ ] of Problem 3.49

since we have transformed the original objective function with a monotone function

to yield a convex objective and the constraint sets are identical [BV04, Section 4.1.3].

We solve Problem 3.49 by solving Problem 3.51 for each time instant τ ∈ [1, T ] to

obtain x̄∗R[τ ] and compute the maximum of the resulting finite set to get (τ ∗, x̄∗R[τ ∗]).

Since Problem 3.49 could be non-convex, this approach ensures a global optimum is

found.

3.6.2 Goal Robot with Point Mass Dynamics

We solve Problem 3.49 for the system given by (3.43). Here, the disturbance set is

W = R2. The probability of successful capture of the robot G can be computed

using (3.48) since the forward stochastic reach probability density ψxG(·; τ, x̄G[0]) is

available.

We implement the problem with the following parameters: Ts = 0.2, T = 20,

µ̄vG = [1.3 0.3]>, ΣG =

 0.5 0.8

0.8 2

, x̄G[0] = [−3 0]>, x̄R[0] = [−3 − 2]> and

U = [1, 2]2. The capture region of the robot R is a box centered about the position

of the robot ȳ with edge length 2a (a = 0.25) and edges parallel to the axes —

CaptureSet(ȳ) = Box(ȳ, a), a convex set.

Figure 3.2 (left) shows the evolution of the mean position of the robot G and

the optimal capture position for the robot R at time instants 4, 5, 8, 14, and 20. The

contour plots of ψxG(·; τ, x̄G[0]) are rotated ellipses since ΣE is not a diagonal matrix.
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Dist. = Gaussian

Time = 4

CapturePr∗x̄R
= 0.16

Dist. = Gaussian

Time = 5

CapturePr∗x̄R
= 0.219

Dist. = Gaussian

Time = 6

CapturePr∗x̄R
= 0.2124

Dist. = Gaussian

Time = 14

CapturePr∗x̄R
= 0.1049

Dist. = Gaussian

Time = 20

CapturePr∗x̄R
= 0.0624

Dist. = Exp.

Time = 1

CapturePr∗x̄R
= 0

(Infeasible)

Dist. = Exp.

Time = 2

CapturePr∗x̄R
= 0.6044

Dist. = Exp.

Time = 3

CapturePr∗x̄R
= 0.3885

Dist. = Exp.

Time = 6

CapturePr∗x̄R
= 0.0495

Dist. = Exp.

Time = 9

CapturePr∗x̄R
= 0.0091

Figure 3.2: Snapshots of optimal capture positions of the robots G and R when
G has point mass dynamics (3.43) with Gaussian model for the velocity (left) and
double integrator dynamics (3.44) with exponential model for the acceleration (right).
The blue line shows the mean position trajectory of robot G µG[τ ], the contour plot
characterizes ψxG(·; τ, x̄G[0]), the blue box shows the reach set of the robot R at
time τ ReachR(τ, x̄R[0]), and the red box shows the capture region centered at x̄∗R[τ ]
CaptureSet(x̄∗R[τ ]).
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Figure 3.3: Solution to Problem 3.51 for robot G dynamics in (3.43), and validation of
CapturePrx̄R(τ, x̄∗R[τ ]; x̄G[0]) via Monte-Carlo simulations. The optimal capture time
is τ ∗ = 5 and the likelihood of capture is CapturePrx̄R(τ ∗, x̄∗R[τ ∗]; x̄G[0]) = 0.219.

The mean position of the robot G moves in a straight line µG[τ ], as it is the trajectory

of (3.43a) when the input is always µ̄vG. The optimal time of capture is τ ∗ = 5, the

optimal capture position is x̄∗R[τ ∗] = [−1.8 0]>, and the corresponding probability of

robot R capturing robot G is 0.219. Note that at this instant, the reach set of the

robot R does not cover the current mean position of the robot G, µ̄[τ ∗] = [−1.7 0.3]>.

While the reach set covers the mean position of robot G at the next time instant

t = 6, the uncertainty in (3.43) causes the probability of successful capture to further

reduce. Counterintuitively, attempting to reach the mean µG[τ ] is not always best.

Figure 3.3 shows the optimal capture probabilities obtained when solving Problem

3.51 for the dynamics (3.43).
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3.6.3 Goal Robot with Double Integrator Dynamics

We now consider a more complicated capture problem, in which the disturbance is

exponential (hence tracking the mean has little relevance because it is not the mode,

the global maxima of the density), and the robot dynamics are more realistic. We solve

Problem 3.49 for the system given by (3.44). Here, the disturbance set is W = R2
+.

Based on the mean of the stochastic acceleration a[t], the mean position of robot

G has a parabolic trajectory due to the double integrator dynamics, as opposed to

the linear trajectory seen in case of the point mass dynamics with Gaussian velocity

model.

Proposition 8. The characteristic function of the forward stochastic reach probability

density of the robot G for dynamics (3.44) is

ΨxG(β̄; τ, x̄G[0]) = exp(jβ̄>(AτG,DIx̄G[0]))
τ−1∏
t=0

λaxλay

(λax − jᾱ2t)(λay − jᾱ2t+1)
(3.52)

where ᾱ = C >4×(2τ)β̄ ∈ R(2τ) and β̄ ∈ R4. The forward stochastic reach probability

density of the robot G is ψxG(x̄; τ, x̄G[0]) = F−1
{

ΨxG(·; τ, x̄G[0])
}

(−x̄).

Proof: Apply (3.6) to the dynamics (3.44).

To solve Problem 3.49, we define CapturePrx̄R(·) as in (3.48). Since we are in-

terested in just the position of robot G, we require only the marginal density of the

forward stochastic reach probability density over the position subspace of robot G,

ψpos
xG

. By Property P4, we have for γ̄ = [γ1 γ2] ∈ R2,

Ψpos
xG

(γ̄; τ, x̄G[0]) = ΨxG([γ1 0 γ2 0]>; τ, x̄G[0]). (3.53)

Unlike the case with Gaussian disturbance, explicit expressions for the forward

stochastic reach probability density ψxG or its marginal density ψpos
xG

are unavailable

since the Fourier transform (3.52) is not standard.
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We define a convex capture region CaptureSet(ȳR) = Box(ȳR, a) ⊆ R2 where

ȳR ∈ R2 is the state of the robot R. We define h(ȳ; ȳR, a) = 1Box(ȳR,a)(ȳ) as the

indicator function corresponding to a 2-D box centered at ȳR with edge length 2a > 0

with h(ȳ) = 1 if ȳ ∈ CaptureSet(ȳR) and zero otherwise. The Fourier transform of

h is a product of sinc functions shifted by ȳR (follows from Property P2 and [Bra86,

Chapter 13])

H(γ̄; ȳR, a) = F{h(·; ȳR, a)}(γ̄) = 4a2 exp (−jȳ>R γ̄)
sin(aγ1) sin(aγ2)

γ1γ2

. (3.54)

Using the square-integrability of h and Ψpos
xG

(see [VHO17, Lem. 1 and 9]), we define

CapturePrx̄R(·) in (3.56). Equation (3.56) is evaluated using (3.52), (3.53), and (3.54).

We use (3.56) as opposed (3.55) due to the unavailability of an explicit expression for

ψpos
xG

,

CapturePrx̄R(τ, x̄R[τ ]; x̄G[0]) =

∫
R2

ψpos
xG

(x̄; τ, x̄G[0])h(x̄; x̄R[τ ], a)dx̄ (3.55)

=

(
1

2π

)2 ∫
R2

Ψpos
xG

(γ̄; τ, x̄G[0])H(γ̄; x̄R[τ ], a)dγ̄. (3.56)

The numerical evaluation of the inverse Fourier transform of Ψpos
xG

to compute (3.55)

will require two quadratures, resulting in a higher approximation error as compared

to (3.56). See [VHO17] for experimental setup and implementation details.

We implement the problem with the following parameters: Ts = 0.2, T = 9,

a = 0.25, λax = 0.25, λay = 0.45, x̄G[0] = [1.5 0 − 0.5 2]>, x̄R[0] = [2.5 0]>, and

U = [−1.5, 1.5]× [1, 4].

Figure 3.2 (right) shows the evolution of the mean position of the robot G and

the optimal capture position for the robot R at time instants 1, 2, 3, 6, and 9. For

every τ ∈ [1, T ], the contour plots of ψpos
xG

(·; τ, x̄G[0]) were estimated via Monte-Carlo

simulation since evaluating ψpos
xG

(·; τ, x̄G[0]) via (2.12) over a grid is computationally
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Figure 3.4: Solution to Problem 3.51 for robot G dynamics in (3.44), and validation of
CapturePrx̄R(τ, x̄∗R[τ ]; x̄G[0]) via Monte-Carlo simulations. The optimal capture time
is τ ∗ = 2 and the capture probability is CapturePrx̄R(τ ∗, x̄∗R[τ ∗]; x̄G[0]) = 0.6044.

expensive. Note that the mean position of the robot G does not coincide with the

mode of ψpos
xG

(·; τ, x̄G[0]) in contrast to the problem discussed for the Gaussian case.

The optimal time of capture is at τ ∗ = 2, the optimal capture position is x̄∗R[τ ∗] =

[1.9 0.55]>, and the corresponding probability of robot R capturing robot G is 0.6044.

Figure 3.4 shows the optimal capture probabilities obtained when solving Problem

3.51 for the dynamics (3.44), and the validation of the results.

3.6.4 Implementation Details

All computations were performed using MATLAB on an Intel Core i7 CPU with

3.4GHz clock rate and 16 GB RAM. We solved Problem 3.51 using MATLAB’s built-

in functions — fmincon for the optimization, mvncdf to compute the objective (3.48)

for the Gaussian case, integral to compute the objective (3.56) for the exponential

case, and max to compute the global optimum of Problem 3.49. In both the sections,
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we used MPT for the reachable set calculation. All geometric computations were

done in the facet representation. We computed the initial guess for the optimization

of Problem 3.51 by performing Euclidean projection of the mean to the feasible set

using CVX [BV04, Section 8.1.1]. Since computing the objective was costly, this

operation saved significant computational time. The Monte-Carlo simulation used

5× 105 particles. No offline computations were done in either of the cases.

The overall computation in the Gaussian case took 5.32 seconds for T = 20.

Since the Gaussian case has explicit expressions for the forward stochastic reach

probability density, the evaluation of the forward stochastic reach probability density

for any given point ȳ ∈ X takes 1.6 milliseconds on average. For the exponential

case, the overall computation took 488.55 seconds (∼ 8 minutes) for T = 9. The

numerical evaluation of the improper integral (3.56) is the major cause of increase in

runtime. The evaluation of the forward stochastic reach probability density for any

given point ȳ ∈ X using (2.12) takes about 10.5 seconds, and the runtime and the

accuracy depend heavily on the point ȳ as well as the bounds used for the integral

approximation. However, the evaluation of CapturePrx̄R(·) using (3.56) is much faster

(0.81 seconds) because H(γ̄; ȳR, a) is a decaying, 2-D sinc function (decaying much

faster than the characteristic function).

The decaying properties of the integrand in (3.56) and characteristic functions in

general permits approximating the improper integrals in (2.12) and (3.56) by as a

proper integral with suitably defined finite bounds. The tradeoff between accuracy

and computational speed, common in quadrature techniques, dictates the choice of

the bound. A detailed analysis of various quadrature techniques, their computational

complexity, and their error analysis can be found in [Pre+07, Chapter 4].
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3.6.5 Experimental Validation

We extended this approach to the case of multiple pursuers in [Vin+18b]. In addition,

we implemented this approach on a hardware testbed with quadrotors. The objective

of this experiment was to demonstrate the utility of forward stochastic reachability to

design autonomous pursuers to capture a human-controlled target UAV. We modeled

the variation of the target trajectories resulting from the human-in-the-loop by a

Gaussian disturbance added to an adversarial trajectory.

We modeled the target as well as the pursuer using 12-dimensional quadrotor

dynamics, linearized about the hover state and controls. We closed the loop for

the target using a LQR controller driving it towards the asset. To account for the

mismatch between this controller and the human’s actions, we added a Gaussian

disturbance to the target dynamics. Next, we designed a receding horizon control for

the pursuer using Problem 3.49. To enable faster computation, we approximated the

objective in Problem 3.51 to a quadratic cost. See [Vin+18b] for more details.

Figures 3.5 and 3.6 show that the pursuer intercepts the threat despite the model

mismatch (due to human controller), demonstrating the robustness provided by the

receding horizon control framework. An update in the desired trajectory occurs on

average every 0.33 seconds.

3.7 Application: Stochastic Motion Planning us-

ing α-Probabilistic Occupied Set and Succes-

sive Convexification

In this section, we utilize probabilistic occupancy function and α-probabilistic oc-

cupied sets to predict the keep-out regions in a stochastic motion planning problem

to achieve desired probabilistic safety (Figure 1.1). We use successive convexifica-

tion [MSA16; Mao+17] techniques to plan the trajectories around the characterized

keep-out sets, in a receding horizon control framework.
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(a) (b) (c) (d)

Figure 3.5: Overhead and sideview snapshots of Experiment 1 with receding horizon
control. (a) Start of the experiment (b) Pursuer moving towards the optimal location
of intercept that was computed online (c) Pursuer at the optimal location of intercept
(d) Successful intercept with xG[τ ] ∈ CatchSet(xPi [τ ]). See Experiment 1 video at
https://youtu.be/eFGg7U7gEQw.

Figure 3.6: Predicted threat mean trajectory and the desired pursuer trajectory (a
fitted polynomial pi(t)) in Experiment 1. The pursuer demonstrates robustness by
intercepting a threat that follows a path inconsistent with the predictions from the
threat model.
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3.7.1 Problem Setup

We consider the motion planning problem over the time interval N[0,T ] with a time

horizon T > 0. The robot dynamics are assumed to be LTI,

xrobot[t+ 1] = Arobotxrobot[t] +Broboturobot[t] (3.57)

with state xrobot[t] ∈ X = Rn, input urobot[t] ∈ U ⊂ Rm (U is compact), and known

matrices Arobot, Brobot and initial state xrobot[0]. The environment is assumed to have

Nobs obstacles, and their dynamics are also assumed to be LTI (j ∈ N[1,Nobs])

xobs,j[t+ 1] = Aobs,jxobs,j[t] + Fobs,jwobs,j[t], (3.58)

with state xobs,j[t] ∈ X , disturbance wobs,j[t] ∈ Rp that has a known probability mea-

sure Pwobs,j
, and known matrices Aobs,j, Fobs,j and initial state xobs,j[0]. We useXobs[t]

to describe the obstacle configuration Xobs[t] = [x>obs,1[t] x>obs,2[t] . . . x>obs,Nobs
[t]]
>

,

with associated probability measure Pt,Xobs[0]
Xobs

parameterized by time t and the initial

obstacle configuration Xobs[0] ∈ XNobs .

Under Assumptions 1 and 2, the rigid body robot is characterized by its state

xrobot[t] and a compact rigid body shape R(xrobot[t]) = {xrobot[t]} ⊕ R(0) ⊂ X .

Similarly, each of the rigid body obstacles is characterized by their respective state

xobs,j[t] and a compact rigid body shape Oj(xobs,j[t]) = {xobs,j[t]} ⊕Oj(0) ⊂ X with

j ∈ N[1,Nobs]. Under Assumption 2, the collision avoidance problem can be equivalently

reformulated as requiring the robot, now modeled as a point mass at xrobot[t], avoid

obstacles with the rigid body shape O+
j (0) = Oj(0)⊕ (−R(0)).

Since R(0) and Oj(0) are compact, the set O+
j (0) is compact [Web94, Thm.

1.8.10(v)], and therefore bounded. The boundedness of O+
j (0) allows us to specify

a separation distance rj > 0 between the states xobs,j[t] and xrobot[t] which guar-
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antees collision avoidance. We define the collection of these separation distances rj

as r = [r1 r2 . . . rNobs
]> ∈ RNobs

>0 , the safe separation vector. We can conservatively

approximate the original collision avoidance problem by requiring the point mass

describing the robot to stay out of a union of balls, ∪Nobs
j=1 Ball(xobs,j[t], rj).

For this problem, we characterize a probabilistic occupancy function for the ob-

stacle configuration, φXobs
: X → [0, 1],

φXobs
(y; t,Xobs[0], r) = Pt,Xobs[0]

Xobs

{
∪Nobs
j=1 {xobs,j[t] ∈ {z ∈ X : y ∈ Ball(z, rj)}}

}
(3.59)

The function φXobs
(y; t,Xobs[0], r) provides the probability that ∪Nobs

j=1 Ball(xobs,j[t], rj)

occupies the state of interest y ∈ X at time t, given the safe separation vector r, and

initial obstacle configuration Xobs[0].

The stochastic motion planning problem of interest may be formulated as (3.60).

minimize
xrobot[1],...,xrobot[T ],
urobot[0],...,urobot[T−1]

J
(
urobot[0], . . . , urobot[T − 1], xrobot[1], . . . , xrobot[T ]

)
subject to xrobot[t+ 1] = Arobotxrobot[t] +Broboturobot[t], ∀t ∈ N[0,T−1]

urobot[t] ∈ U , ∀t ∈ N[0,T−1]

xrobot[t] ∈ SafeSet, ∀t ∈ N[0,T−1]

xrobot[T ] ∈ GoalSet

φXobs
(xrobot[t]; t,Xobs[0], r) < α, ∀t ∈ N[1,T ]

(3.60)

We seek to minimize a convex cost function J : UT ×X T → R while assuring that 1)

the robot stays within a convex and compact safe set SafeSet ⊆ X at all times, 2) the

robot reaches a convex and compact goal set GoalSet ⊆ SafeSet at time T , and 3) the

probability of collision of the robot with any of the rigid-body obstacles is below a

maximum acceptable probability of collision α ∈ (0, 1] for each instant. We know the

77



CHAPTER 3. FORWARD STOCHASTIC REACHABILITY: THEORY AND COMPUTATION

initial obstacle configuration Xobs[0], the initial robot state xrobot[0], the dynamics of

the robot (3.57) and the obstacles (3.58), and the safe separation vector r ∈ RNobs
>0 .

3.7.2 Receding Horizon Control Framework

The uncertainty in the stochastic obstacle dynamics grows over time, resulting in

large keep-out sets. Conservative overapproximations of these large sets may induce

infeasibility, even when the original problem is feasible. Replanning the robot tra-

jectory based on the information available about the obstacle movement can reduce

this conservativism. This motivates the use of receding horizon control. We choose a

control horizon 0 < N < T and solve a problem similar to (3.60), referred to as the

receding horizon optimal control problem, for the time interval N[t,t+N ].

Assumption 3. Full-state information is available about all the obstacles after exe-

cuting the first action prescribed by the solution to the receding horizon optimal control

problem.

To utilize a receding horizon control framework, we have to solve an additional

convex optimization problem to find xrobot[N ] closest to the GoalSet,

minimize
y

‖xrobot[N ]− y‖2

subject to y ∈ GoalSet

(3.61)

The optimal value of (3.61) is zero only when xrobot[N ] ∈ GoalSet, in which case the

optimal solution is y∗ = xrobot[N ]. Using the fixed-risk approach in [BHW06], we

replace the constraint φXobs
(xrobot[t]; t,Xobs[0], r) < α for every t ∈ N[1,T ] in (3.60)

with

xrobot[t] 6∈
Nobs⋃
j=1

PrOccupySetxobs,j

(
α

Nobs

; t, xobs,j[0], rj

)
. (3.62)
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We obtain the receding horizon optimal control problem in (3.63) by introducing the

parameter λ ≥ 0 and scalarizing the bi-criterion optimization problem (minimizing

cost J as well as ‖xrobot[N ]− y‖2 (see [BV04, Sec. 4.7.4]),

minimize
y,xrobot[1],...,xrobot[N ],
urobot[0],...,urobot[N−1]

J
(
urobot[0], . . . , urobot[N − 1], xrobot[1], . . . , xrobot[N ]

)
+λ‖xrobot[N ]− y‖2

subject to xrobot[t+ 1] = Arobotxrobot[t] +Broboturobot[t], ∀t ∈ N[0,T−1]

urobot[t] ∈ U , ∀t ∈ N[0,T−1]

xrobot[t] ∈ SafeSet, ∀t ∈ N[0,T−1]

y ∈ GoalSet

xrobot[t] 6∈
⋃Nobs

j=1 PrOccupySetxobs,j

(
α

Nobs
; t, xobs,j[0], rj

)
,

∀t ∈ N[1,T ]

(3.63)

where J : XN×UN → R approximates the original cost J (defined for the time horizon

T ) over the planning horizon N . The objective in (3.63) is convex with respect to

the decision variables xrobot[·] and urobot[·]. We can interpret λ in (3.63) as a way to

emphasize the relative importance of being close to the goal set with respect to the

optimization of the cost function J . For large λ, the solver attempts to generate a

trajectory that will minimize the distance of the terminal state at the expense of a

potential increase in the cost function J .

3.7.3 Numerical Simulation

For brevity, we omit the details of the motion planner, successive convexification

[Mao+17; MSA16], used to solve (3.63). The details of this technique, its adaptation

to solve (3.63), and the analysis of the computational effort can be found in [Vin+18a].
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Figure 3.7: Planning over a single control horizon with the uncertainty in the obstacle
location growing over time. The sets shown are the α-probabilistic occupied sets
for each of the obstacle at each time step in the future. We compare the paths
different two stages of the successive convexification planning (the feasible trajectory
generation step and the project-and-linearize-based trajectory optimization).

Figure 3.8: Receding horizon control-based solution to the stochastic motion planning
problem. The motion planning was done using successive convexification [Mao+17;
MSA16] with obstacle predictions provided probabilistic occupancy functions. The
robot must stay within the quadrilateral, eventually reach the green region, and avoid
stochastically moving obstacles (red, pink, and black). The faded blue lines and the
black line show the intermediate plans and the executed trajectory respectively.
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We consider the planning problem with double integrator robot dynamics (3.57),

Arobot =



1 0 T∆ 0

0 1 0 T∆

0 0 1 0

0 0 0 1


,& Brobot =



T 2
∆

2
0

0
T 2

∆

2

T∆ 0

0 T∆


.

with sampling time T∆ = 0.25 s, the initial robot location xrobot[0] = [10 0]>, and

U = [−2, 2]2. We set Nobs = 3, and presume double integrator dynamics for the

obstacles (3.58) with Aobs,j = Arobot, Fobs,j = Brobot, and Gaussian wobs,j[t] ∼

N (µwobs,j
,Σwobs,j

), j ∈ N[1,Nobs]. We choose the obstacle initial positions xobs,1[0] =

[10 25]>, xobs,2[0] = [35 5]>, xobs,3[0] = [70 80]>, the mean values µwobs,1
= [3 − 3]>,

µwobs,2
= [−2 3]>, µwobs,3

= [−3 − 5]>, and the covariance matrix

Σwobs,j
=

2.60 0.09

0.09 0.58

 ∀j ∈ {1, 2, 3}. We solve (3.60) with a time horizon T = 15

s (60 time steps), the cost function J(·) =
∑T−1

t=0 ‖urobot[t]‖2 to minimize as the con-

trol effort, SafeSet = conv((50, 40), (40, 0), (0,−5), (10, 30)) (see (2.4)), GoalSet =

Ball([40 35]>, 2), control horizon N = 13, maximum acceptable collision probability

α = 0.001, scalarization parameter λ = 104, and safe separation r = [2 2 2].

Figure 3.7 shows the evolution of E(µxobs,j
[t], Q+

xobs,j
[t]) via Algorithm 4 (with an

ellipsoid fit [Vin+18a, Alg. 2])) for a single control horizon, for both the initial

feasible solution and project-and-linearize solutions. Figure 3.8 shows the realization

of the stochastic motion planning problem at different time instants. We simulated

the obstacle motion by drawing samples from their respective disturbance probability

densities. The probability of an obstacle (black) reaching the GoalSet becomes non-

trivial at t = 4.25s, causing the planner to re-plan its trajectory.

In our simulations, we were able to plan the trajectory with a mean solve time of

0.33 seconds and standard deviation of 0.17 seconds.
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3.8 Summary

This chapter discussed a grid-free and scalable framework for addressing the problem

of forward stochastic reachability for linear systems. We also characterized sufficient

conditions for the log-concavity of the forward stochastic reach probability measure

and convexity of the forward stochastic reach set. We also utilized this analysis to

define the probabilistic occupancy function and the α-probabilistic occupied set for

rigid body obstacles with linear dynamics. Additionally, we characterized sufficient

conditions for the log-concavity and the upper semi-continuity of the probabilistic

occupancy function. Using these results, we characterized sufficient conditions for

the convexity, closedness, and compactness of the α-probabilistic occupied set. We

proposed two computationally efficient algorithms to compute the approximation of

the α-probabilistic occupied set. We showed the benefit of the convexity analysis by

considering two application problems — capture of a stochastic target and stochastic

motion planning problems.
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Chapter 4

Stochastic Reachability of a Target
Tube: Theory and Control

4.1 Introduction

The problem of stochastic reachability of a target tube is motivated by the question:

what initial states of a stochastic dynamical system can be driven to stay within a

target tube (a collection of time-stamped target sets) with a desired likelihood, while

respecting the given bounds on control authority? Figure 1.5 provides an illustration

of this problem. This chapter discusses novel theory for this problem. Specifically,

we propose sufficient conditions under which the optimal value functions are Borel

measurable, upper semi-continuous, and log-concave, and the stochastic reach set is

closed, bounded, compact, and convex. Using these convexity and compactness prop-

erties, we describe an underapproximative interpolation technique for the stochastic

reach sets. We also consider the problem of synthesis open-loop and affine feed-

back controllers to maximize probabilistic safety. We discuss how these point-based

stochastic reachability evaluations can provide underapproximations to the maximal

reach probability. The theoretical results presented in this chapter enable the design

of scalable, grid-free, and anytime algorithms to verify high-dimensional systems,

discussed in Chapter 5.
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4.2 Related Work

The problem of backward stochastic reachability has received significant attention

in the verification literature. The problem of stochastic reachability of target tube,

discussed in this chapter, subsumes existing work on stochastic viability and terminal

hitting-time stochastic reach-avoid problems [Aba+08; SL10]. Stochastic viability

problems are concerned with maximizing the probability that system stays within

a time-invariant safe set for a given time horizon (target tube with time-invariant

safe sets) [Aba+08]. Terminal hitting-time stochastic reach-avoid problems are con-

cerned with maximizing the probability that system stays within a time-invariant safe

set within the time horizon and hits a (potentially different) target set at the time

horizon [SL10].

A dynamic programming formulation for the stochastic reachability problem for

the general class of discrete-time stochastic hybrid systems was proposed in [Aba+07;

Aba+08; SL10]. This formulation, based on Markov decision process theory [BS78],

casts the stochastic reachability problem as a discrete-time stochastic optimal control

problem. The dynamic programming approach yields optimal value functions which

map the states to their maximal reach probability. The superlevel sets of these func-

tions, the stochastic reach sets, are the sets of “good” initial states, i.e., the set of

initial states from which the system may be driven to stay within the target tube

with a probability greater than a given threshold. For stochastic reach-avoid prob-

lems, sufficient conditions have been proposed for the well-posedness of the stochastic

reach-avoid problem and the existence of an optimal Markov policy [Din+13; Kar+17;

Yan18; VO17]. However, little is known about the sufficient conditions that guarantee

convexity and compactness of stochastic reach sets, which we address in this chapter.
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4.3 Stochastic Reachability of a Target Tube

We define the target tube as T = {Tk}Nk=0, Tk ∈ B(X ). These are pre-determined

time-stamped sets of states that are deemed safe at each time instant within the time

horizon. Define the reach probability of a target tube, rπx0
(T ), for known initial state

x0 and a Markov policy π (see Section 2.5), as the probability that the execution

with policy π lies within the target tube T for the entire time horizon. Formally, we

define rπx0
(T ) as (see [VO18c] for more details),

rπx0
(T ) = Px0,π

X

{
∀k ∈ N[0,N ], xk ∈ Tk

}
. (4.1)

Note that this definition of reach probability is consistent with the terminal hitting-

time reach probability defined in [SL10] and the viability probability defined in

[Aba+08] for appropriately defined target tubes. For brevity, we will refer to the

event {∀k ∈ N[0,N ], xk ∈ Tk} as {X ∈ T }, with a slight abuse of notation.

Motivated by [SL10, Def. 10], we define a Markov policy π∗ as a maximal reach

policy when it is the optimal solution of (4.2),

rπ
∗

x0
(T ) = sup

π∈M
rπx0

(T ). (4.2)

The solution of (4.2) may be characterized via dynamic programming, a straighfor-

ward extension of stochastic reachability [SL10, Thm. 11] and viability [Aba+08,

Thm. 2]. Define V ∗k : X → [0, 1], k ∈ N[0,N ], by the backward recursion for x ∈ X ,

V ∗N(x) = 1TN (x) (4.3a)

V ∗k (x) = sup
u∈U

1Tk(x)

∫
X
V ∗k+1(y)Qk(dy|x, u). (4.3b)

Then, the optimal value to (4.2) is rπ
∗
x0

(T ) = V ∗0 (x0) for every x0 ∈ X . Here, Qk(·|x, u)

is given by (2.20). In some special cases, it has an explicit expression in terms of the
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disturbance PDF (2.22).

The optimal value function V ∗0 (x0) assigns to each initial state x0 ∈ X the maximal

reach probability for the given target tube, and these maps are not probability density

functions themselves (they don’t integrate to 1 over X ). By construction,

0 ≤ V ∗k (x) ≤ 1Tk(x), ∀x ∈ X . (4.4)

For α ∈ [0, 1], we define the superlevel sets of V ∗k (·) as,

Lπ∗k (α,T ) = {x ∈ X : V ∗k (x) ≥ α}. (4.5)

Of special interest is the superlevel set of V ∗0 (·), the α-level stochastic reach set,

Lπ∗0 (α,T ) = {x ∈ X : rπ
∗

x0
(T ) ≥ α}. (4.6)

Here, Lπ∗0 (α,T ) is the set of states which satisfies the objective of staying within

the given target tube with a probability greater than or equal to α. From (4.1),

Lπ∗(0,T ) = X .

Lemma 6. If α > 0, then Lπ∗k (α,T ) ⊆ Tk, ∀k ∈ N[0,N ]. Additionally, bounded Tk

implies bounded Lπ∗k (α,T ) for any k ∈ N[0,N ] and α > 0.

Proof: For any x ∈ Lπ∗k (α,T ), V ∗k (x) ≥ α. By (4.4), we have 1Tk(x) ≥ V ∗k (x) ≥

α > 0⇒ x ∈ Tk. The boundedness of Lπ∗k (α,T ) follows by definition [Tao06b, Defn.

12.5.3].

Figure 1.5 (page. 10) illustrated the definition of the target tube T and the

stochastic reach set Lπ∗0 (α,T ) (4.6). Problem (4.2) defines the problem of stochastic

reachability of a target tube, and it subsumes existing work done on stochastic viabil-

ity and stochastic reach-avoid problems [Aba+08; SL10; Aba+07]. For T = {S}Nk=0,

rρ
∗

x0
(T ) and Lπ∗0 (α,T ) is the maximal probabilistic safety probability and maximally
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Figure 4.1: Dynamic programming (4.3) applied to example (4.7).

probabilistic safe set (stochastic viability set) respectively [Aba+08; Aba+07]. For

T = {{S}N−1
k=0 , T }, r

ρ∗

x0
(T ) and Lπ∗0 (α,T ) is the maximal terminal hitting-time

reach-avoid probability and the terminal hitting-time stochastic reach-avoid set re-

spectively [SL10].

Illustrative example: Consider the following one-dimensional system,

xk+1 = xk + uk +wk (4.7)

with state xk ∈ R, input uk ∈ [−1, 1], and disturbancewk ∼ N (0, 0.001). We consider

the stochastic reachability of a target tube T = {[−γk, γk]}Nk=0 with γ = 0.6 and time

horizon N = 5. Using a step size of 0.01, the dynamic programming solution (4.3) is

shown in Figure 4.1. As prescribed by (4.3a), we set V ∗5 (x) = 1T5(x), and compute

V ∗k (·) using the backward recursion (4.3b) over a grid of {−1,−0.99, . . . , 0.99, 1}. The

0.8-level stochastic reach set is given by the superlevel set of V ∗0 (·) at 0.8. From V ∗k (·)

shown in Figure 4.1, we observe 0 ≤ V ∗k (x) ≤ 1Tk(x), ∀x ∈ X (4.4) and Lemma 6,

Lπ∗k (α,T ) ⊆ Tk, ∀k ∈ N[0,N ] and ∀α > 0.
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4.4 Problem Statements

Problem 3. Provide sufficient conditions under which:

1. a maximal Markov policy to solve (4.2) exists,

2. V ∗k (·) is Borel-measurable, upper semi-continuous, and log-concave, and

3. the α-superlevel set of V ∗0 (·), Lπ∗k (α,T ), is closed, compact, and convex,

for every k ∈ N[0,N ] and α ∈ [0, 1].

Problem 4. Provide sufficient conditions under which an underapproximative in-

terpolation of Lπ∗k (α,T ) can be constructed, given Lπ∗k (α1,T ) and Lπ∗k (α2,T ) with

α ∈ [α1, α2] and α1, α2 ∈ [0, 1] for any k ∈ N[0,N ].

Problem 5. Demonstrate that the restriction of admissible policies for (4.2) to open-

loop controllers yields an underapproximation W ∗
0 : X → [0, 1] to the maximal reach

probability obtained via (4.2).

Problem 5.a. Characterize sufficient conditions under which:

1. the open-loop controller-based underapproximation to (4.2) is well-posed and

convex,

2. the α-superlevel set of W ∗
0 (·), Kρ

∗

0 (α,T ), is convex and compact for α ∈ (0, 1],

and

3. the underapproximative interpolation technique, described in Problem 4, holds

for Kρ
∗

0 (·,T ).

Problem 6. Construct an underapproximation of the maximal reach probability

rπ
∗
x0

(T ) (4.2), based on the optimal reach probability attained by an unsaturated affine

disturbance feedback controller (2.23).
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Assum. 4
Existence via
measurability

(Thm. 4)

Assum. 5
Closed & existence via
upper semi-continuous

(Thm. 5)

Assum. 6 Convex (Thm. 6)

Assum. 5 + Compact Tk
Compactness (Prop. 11)

Assum. 7

Convex & compact ⇒ Tight polytopic

representation (Thm. 7, Rem. 6)

Figure 4.2: Various assumptions introduced in Section 4.5, and the resulting set
properties (italicized) of the stochastic reach set Lπ∗k (α,T ).

Problem 6.a. Formulate a chance constraint optimization problem to solve for the

affine disturbance feedback controller that satisfies a chance constraint relaxation of

the hard input constraints, up to a user-specified threshold.

4.5 Properties of the Stochastic Reach Set

In this section, we will address Problem 3. We describe the relationship between

various assumptions introduced in Section 4.5 in Figure 4.2.

4.5.1 Existence and Measurability: Borel Assumption

Sufficient conditions for the existence of an optimal Markov policy and the Borel-

measurability of the optimal value functions have been formulated for reach-avoid

problems [BS78, Sec. 8.3], [Din+13; Yan18; Kar+17; VO17]. These results impose

continuity requirements on the stochastic kernel (Definition 2) and utilize a measur-

able selection theorem [HPV76, Thm. 2] to obtain the desired existence and mea-

surability results. We now present straightforward extensions of these results to the

more general problem of stochastic reachability of a target tube (4.2).
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Definition 2. (Continuity of stochastic kernels) Let H be the set of all bounded

and Borel-measurable functions h : X → R. A stochastic kernel Qk(·|x, u) is said to

be:

a. input-continuous, if
∫
X h(y)Q(dy|x, u) is continuous over U for each x ∈ X for

any h ∈ H, and

b. continuous, if
∫
X h(y)Q(dy|x, u) is continuous over X × U for any h ∈ H.

Recall that a function is said to be continuous if and only if its image of every

sequence in its domain is also a convergent sequence [Tao06b, Thm. 13.4]. Since

continuity over product spaces imply continuity over individual spaces [Tao06b, Lem.

13.2.1], continuous stochastic kernels are input-continuous. In other words, Defi-

nition 2b imposes a stronger requirement on the stochastic kernel Qk(·|x, u) than

Definition 2a.

Assumption 4 (Borel).

a. fk is Borel-measurable over X × U ×W , ∀k ∈ N[0,N−1],

b. U is compact,

c. T = {Tk}Nk=0 such that Tk ⊆ X are Borel ∀k ∈ N[0,N ], and

d. Qk in (2.20) is input-continuous (Definition 2a).

In Theorem 4 and Proposition 9, we generalize the existence, measurability, and

continuity results presented in [Kar+17, Props. 1 and 2] to the stochastic reachability

problem of a target tube for a system described by a time-varying stochastic kernel.

Note that unlike [Kar+17, Prop. 2], the structure in (4.2) permits exact characteri-

zation of where V ∗k (·) may be discontinuous in Proposition 9. Our proofs are similar

in structure to [Kar+17, Prop. 1 and 2] [VO17, Thm. 1], and exploit the upper

semi-continuous property of the objective of (4.3b) afforded by Definition 2a.
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Theorem 4. Under Assumption 4,

a. V ∗k (·), ∀k ∈ N[0,N ] is Borel-measurable, and

b. π∗ exists, and consists of Borel-measurable maps µ∗k(·), ∀k ∈ N[0,N−1].

Proof: (By induction) (By induction) Since TN−1, TN are Borel sets and indicator

functions are bounded, 1TN−1
(·) and 1TN (·) are bounded and Borel-measurable. The

Borel-measurability and boundedness of V ∗N(·) follows from (4.3a).

Consider the base case k = N − 1. Since V ∗N(·) is Borel-measurable (by above)

and bounded (by (4.4)),
∫
X V

∗
N(y)Q(dy|x, u) is continuous over U for each x ∈ X

by Definition 2a. Since continuity implies upper semi-continuity [BS78, Lem. 7.13

(b)] and U is compact, an optimal Borel-measurable input map µ∗N−1(·) exists and∫
X V

∗
N(y)QN(dy|x, µ∗N−1(x)) is Borel-measurable over X by [HPV76, Thm. 2]. Finally,

V ∗N−1(·) is Borel-measurable since the product operator preserves Borel-measurability

[Tao06b, Cor. 18.5.7].

For the case k = t with t ∈ N[0,N−2], assume for induction that V ∗t+1(·) is Borel-

measurable. By the same arguments as above, a Borel-measurable µ∗t (·) exists and

V ∗t (·) is Borel-measurable, completing the proof.

Since continuity implies upper semi-continuous,
∫
X V

∗
k+1(y)Qk(dy|x, u) is upper

semi-continuous over U for every x ∈ X and k ∈ N[0,N−1]. Thus, the set

Uk(x, λ) =

{
u ∈ U :

∫
X
V ∗k+1(y)Qk(y|x, u)dy ≥ λ

}

is closed for every λ ∈ R. Since U is compact (Assumption 4b) and Uk(x, λ) is

closed, Uk(x, λ) is compact for every x ∈ X , k ∈ N[0,N−1], and λ ∈ R [Tao06b,

Thm. 12.5.10a]. The compactness of Uk(x, λ) for every x ∈ X , k ∈ N[0,N−1], and

λ ∈ R is another well-known sufficient condition for the existence of Markov policy

(see [Aba+08, Thm. 1] [SL10, Thm. 11] [BS78, Lem. 3.1]).
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Proposition 9. Under Assumption 4, if Qk is continuous, then

a.
∫
X V

∗
k+1(y)Qk(dy|x, µ∗k(x)), ∀k ∈ N[0,N−1] is continuous over X , and

b. V ∗k (·), ∀k ∈ N[0,N−1] is piecewise-continuous over X where the discontinuities,

if any, is restricted to the relative boundary of the target sets ∂Tk.

Proof: Proof of a): Since continuous stochastic kernels are input-continuous,

we have for every k ∈ N[0,N ], V
∗
k (·) is Borel-measurable by Theorem 4 and bounded

by (4.4). By Definition 2b,
∫
X V

∗
k+1(y)Qk(dy|x, u) is continuous over X ×U for every

k ∈ N[0,N−1]. By (4.4) and [Tao06b, Prop. 19.2.6],
∫
X V

∗
k+1(y)Qk(dy|x, u) is bounded

and nonnegative. By [BS78, Prop. 7.32], we know that
∫
X V

∗
k+1(y)Qk(dy|x, µ∗k(x)) is

lower semi-continuous and upper semi-continuous over X , implying its continuity.

Proof of b): For every k ∈ N[0,N ], every x ∈ int(Tk), and any sequence xi
i→∞−−−→ x

where xi ∈ X , there exists i0 ∈ N such that ∀i ≥ i0, xi ∈ Tk. This implies 1Tk(xi) =

1Tk(x) = 1, ∀i ≥ i0, implying the continuity of 1Tk(·), ∀k ∈ N[0,N ] over int(Tk). Since

multiplication of continuous functions are continuous [Tao06b, Cor. 13.2.3a], V ∗k (x)

is continuous over int(Tk) by (4.3b) and Proposition 9a. By construction, V ∗k (x) = 0

for every x ∈ int(X \ Tk), implying V ∗k (x) is trivially continuous over int(X \ Tk).

Hence, V ∗k (·) is piecewise-continuous over X , with discontinuities if any restricted to

the relative boundary of Tk.

By Proposition 9b, if for some k ∈ N[0,N−1], the target set Tk = X , then V ∗k (·)

is continuous over X for that particular k. For reachability problems that do not

have safety constraints at k = 0 (T0 = X ), V ∗0 (·) is continuous over X , presuming the

restrictions specified in Assumption 4 and continuous Qk.

Assumptions 4a, 4b, and 4c impose requirements on the stochastic reachability

problem that are easy to ensure. Based on [BS78, Sec. 8.3], Lemma 7 provides a set

of sufficient conditions that guarantees Assumption 4d.
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Lemma 7. Given an affine-perturbed nonlinear system (2.18) with gk(·, ·) continuous

in U for each x ∈ X and k ∈ N[0,N−1]; if the disturbance PDF ψw,k is continuous over

W, then the stochastic kernel Qk defined by (2.22) is input-continuous.

Lemma 7 applies to linear systems (2.19) as well [VO17, Lem. 2]. If gk is con-

tinuous over X × U for each k ∈ N[0,N−1], then we have continuous (as opposed to

input-continuous) Qk.

4.5.2 Existence and Compactness: Closed assumption

In this section, we consider Assumption 5 to provide an alternative set of sufficient

conditions to guarantee existence of an optimal Markov policy to solve (4.2).

Assumption 5 (Closed).

a. fk is continuous over X × U ×W , ∀k ∈ N[0,N−1],

b. X is closed.

c. U is compact,

d. T = {Tk}Nk=0 such that Tk ⊆ X are closed ∀k ∈ N[0,N ], and

The key difference between Assumptions 4 and 5 is the relaxation (replacement)

of Assumption 4d, the continuity requirements on Qk, with stricter requirements on

fk, X , and T . Note that Assumption 4 imposes restrictions on ψw,k but not on T ,

whereas Assumption 5 imposes restrictions on T but not on ψw,k. Hence, we do not

expect either of these assumptions to subsume the other (see Figure 4.2).

For Assumption 5, Theorem 5 guarantees the existence of an optimal Markov

policy and upper semi-continuous optimal value functions. In contrast to the proof

of Theorem 4, the proof of Theorem 5 uses Proposition 10 to guarantee that the

objective of (4.3b) is upper semi-continuous, and then uses [BS78, Prop. 7.33] to
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guarantee that the optimal value functions are upper semi-continuous. Note that

Proposition 10 does not impose any restrictions on the stochastic kernel Qk.

Proposition 10. Suppose Assumptions 5a and 5b holds. For every bounded, non-

negative, and upper semi-continuous function h : X → R,
∫
X h(y)Qk(dy|x, u), ∀k ∈

N[0,N−1] is upper semi-continuous over X × U .

Proof: By (2.21), we can rewrite
∫
X h(y)Qk(dy|x, u) as∫

X h(fk(x, u, w))ψw,k(w)dw. Note that h(fk(x, u, w)) is upper semi-continuous over

X × U ×W by Assumption 5a and the fact that upper semi-continuous function of

a continuous function is upper semi-continuous [RW09, Ex. 1.4], and the assump-

tion that h(·) is upper semi-continuous. Additionally, h(fk(x, u, w)) is bounded and

non-negative since h(·) is bounded and non-negative. If L ∈ R is an upper bound of

h(·), then L − h(fk(x, u, w)) is non-negative and l.s.c over X × U for every w ∈ W .

By Borel-measurability of h, h(fk(x, u,w)) is a non-negative random vector defined

on (h(X ),B(h(X ))). From Fatou’s lemma [CT97, Sec. 6.2, Thm. 2.1] and the fact

that L− h(fk(x, u, w)) is l.s.c, Borel-measurable, and non-negative, we have

lim inf
i

∫
X

(L− h(fk(xi, ui, w)))ψw,k(w)dw

≥
∫
X

lim inf
i

(L− h(fk(xi, ui, w)))ψw,k(w)dw

≥
∫
X

(L− h(fk(x, u, w)))ψw,k(w)dw. (4.8)

By the linearity properties of the Lebesgue integral on (4.8) [Tao06b, Prop. 19.2.6c],

lim sup
i

∫
X
h(fk(xi, ui, w))ψw,k(w)dw ≤

∫
X
h(fk(x, u, w))ψw,k(w)dw, (4.9)

which completes the proof.

Theorem 5. Under Assumption 5,
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a. V ∗k (·), ∀k ∈ N[0,N ] is upper semi-continuous over X ,

b. π∗ exists, and it consists of Borel-measurable maps µ∗k(·), ∀k ∈ N[0,N−1], and

c. Lπ∗k (α,T ), ∀k ∈ N[0,N ], ∀α ∈ [0, 1] is closed.

Proof: Since Tk and X are closed, 1Tk(·), ∀k ∈ N[0,N ] is upper semi-continuous

over X . Hence, V ∗N(·) is upper semi-continuous over X .

Consider the base case k = N − 1. Due to closedness of TN , V ∗N(·) is upper semi-

continuous, and V ∗N(·) is bounded and non-negative by (4.4). Hence,∫
X V

∗
N(y)QN−1(dy|x, u) is upper semi-continuous over X ×U by Proposition 10. By a

selection result for semi-continuous cost functions [BS78, Prop. 7.33] and compactness

of U , an optimal Borel-measurable input map µ∗N−1(·) exists and∫
X V

∗
N(y)QN(dy|x, µ∗N−1(x)) is upper semi-continuous over X . Since upper semi-

continuity is preserved under multiplication [Put05, Props. B.1], V ∗N−1(·) is upper

semi-continuous over X by (4.3b).

For the case k = t with t ∈ N[0,N−2], assume for induction that V ∗t+1(·) is upper

semi-continuous. By the same arguments as above, a Borel-measurable µ∗t (·) exists

and V ∗t (·) is upper semi-continuous, completing the proof for a) and b).

Upper semi-continuity of V ∗k (·), ∀k ∈ N[0,N ], implies that Lπ∗k (α,T ), ∀k ∈ N[0,N ]

is closed for α ∈ [0, 1].

Remark 4. The stochastic reachability problem of a target tube (4.2) is well-posed

under Assumptions 4 or 5.

Proposition 11. Under Assumption 5, if Tk is bounded (and thereby compact) for

some k ∈ N[0,N ], then Lπ∗k (α,T ), ∀α ∈ (0, 1], is compact.

Proof: Follows from Heine-Borel theorem, and closedness (Theorem 5c) and

boundedness (Lemma 6) of Lπ∗k (α,T ).
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By Proposition 11, if T0 is bounded (and thereby compact), then Lπ∗0 (α,T ), ∀α ∈

(0, 1] is compact, under Assumption 5. Further, if X is bounded, then Lπ∗(0,T ) = X

is compact.

Relationship between Markov policies and general policies for stochastic
reachability

We can also use the well-posedness of the reachability problem to characterize when

the equivalence in performance of a Markov policy and a general policy (see Sec-

tion 2.5.2 for their definitions).

Lemma 8. Let Assumption 5 hold. For every x0 ∈ T0 and a general policy π′, there

exists a Markov policy π ∈M such that

rπx0
(T ) = rπ

′

x0
(T ). (4.10)

Proof: The hypothesis ensures that the stochastic reachability problem is well-

posed (Remark 4). Further, the reachability problem meets the criteria imposed by

the finite horizon stochastic optimal control model used in [BS78, Defn. 1]. We have

(4.10) from [BS78, Prop. 8.1] and arguments similar to the proof of [Aba+08, Thm.

1] for every initial state x0 ∈ X .

By Lemma 8, we do not have to consider the general policies π′ in the formulation of

the stochastic reachability of a target tube problem (4.2).

4.5.3 Convexity: Convex Assumption

With existence conditions established for Assumptions 4 and 5, we now focus on

establishing sufficient conditions under which Lπ∗0 (α,T ) is convex.

Assumption 6 (Convex).

a. System dynamics are linear (2.19) and X = Rn,
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b. U is convex and compact,

c. Either

1) Qk is input-continuous ∀k ∈ N[0,N−1], OR

2) Tk is closed ∀k ∈ N[0,N ],

d. Tk is convex ∀k ∈ N[0,N ], and

e. ψw,k is a log-concave PDF.

Since affine transformations of log-concave functions are log-concave, Assump-

tion 6e may also be replaced with the requirement that Qk is log-concave by (2.22).

Under Assumption 6a, 6b, and 6c, the optimization problems in (4.3b) are well-defined

and an optimal Markov policy exists (see Remark 4). We will use Proposition 12 in

the proof of Theorem 6 to guarantee that the objective of (4.3b) is log-concave (similar

to the role played by Proposition 10 in the proof of Theorem 5).

Proposition 12. Suppose Assumption 6a and 6e holds and U is convex. For every

log-concave, Borel-measurable, and non-negative function h : X → R,∫
X h(y)Qk(dy|x, u), ∀k ∈ N[0,N−1], is log-concave over X × U .

Proof: Similarly to Proposition 10, we show the log-concavity of∫
X h(y)Qk(dy|x, u) =

∫
X h(Akx + Bku + w)ψw,k(w)dw ∀k ∈ N[0,N−1] over X × U .

Note that compositions of log-concave functions with affine functions preserve log-

concavity [BV04, Sec. 3.2.2]. Hence, h(Akxk + Buk + wk) is log-concave over

X×U×W . Since multiplication and partial integration preserves log-concavity [BV04,

Sec. 3.5.2], we conclude that
∫
X h(y)Qk(dy|x, u), ∀k ∈ N[0,N−1] is log-concave over

X × U .

Theorem 6. Under Assumption 6,

a. V ∗k (·), ∀k ∈ N[0,N ] is log-concave over X , and
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Property for k ∈ N[0,N ] fk (2.17)
∀k ∈ N[0,N−1]

X
(Borel)

U
(Compact)

Tk, ∀k ∈
N[0,N ] (Borel)

Qk ∀k ∈ N[0,N−1]

(Borel-measurable) Result
V ∗k (·) over X Lπ∗

k (α,T )

Measurability Measurable Input-continuous Thm. 4

Piecewise
continuity

Continuous Prop. 9

Upper semi-
continuity

Closed
∀α ∈ [0, 1]

Continuous Closed Closed Thm. 5

Compact
∀α ∈ (0, 1]

Compact Prop. 11

Log-
concavity

Convex
∀α ∈ [0, 1]

Linear
(2.19)

Convex Convex Convex
Input-continuous
& Log-concave

Thm. 6

Convex &
closed

Log-concave

Table 4.1: Sufficient conditions for various properties of the maximal reach probabil-
ity V ∗k (·) and the stochastic reach set Lπ∗(·). See [Aba+07, Thm. 2] for Lipschitz
continuity of V ∗k (·).

b. Lπ∗k (α,T ), ∀k ∈ N[0,N ], ∀α ∈ [0, 1] is convex.

Proof: The proof of the log-concavity of V ∗k (·) is similar to Theorem 5. The

convexity of Tk, ∀k ∈ N[0,N ] ensures that their respective indicator functions are log-

concave. The log-concavity of V ∗k (·), ∀k ∈ N[0,N ] follows from Proposition 12, the

fact that log-concavity is preserved under partial supremum over convex sets and

multiplication [BV04, Secs. 3.2.5 and 3.5.2], and the convexity of U .

Log-concavity of V ∗k (·), ∀k ∈ N[0,N ] (via quasiconcavity) implies that Lπ∗k (α,T ),

∀k ∈ N[0,N ] is convex for α ∈ [0, 1] [BV04, Sec. 3.5].

Remark 5. With Theorem 6, we have also shown that the dynamic programming

solution (4.3) to the stochastic reachability problem of a target tube (4.2) under As-

sumption 6 is a series of convex optimization problems.

4.5.4 Polytopic Representation: Convex and Compact As-
sumption

Theorem 6 and Proposition 11 together guarantee convex and compact Lπ∗k (α,T ).

For ease of discussion, we formulate Assumption 7 to combine the requirements of

Assumptions 5 and 6 and Proposition 11.

Assumption 7 (Convex and compact).
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a. System dynamics are linear (2.19) and X = Rn,

b. U is convex and compact,

c. Tk is convex and compact ∀k ∈ N[0,N ], and

d. ψw,k is a log-concave PDF.

Theorem 7. Under Assumption 7, Lπ∗k (α,T ), ∀k ∈ N[0,N ],∀α ∈ (0, 1] is convex and

compact.

Proof: Follows from Proposition 11 and Theorem 6.

Remark 6. Assumption 7 enables tight polytopic representation of Lπ∗k (α,T ), ∀k ∈

N[0,N ], α ∈ (0, 1].

By Proposition 11, if for every α ∈ (0, 1], we require only Lπ∗0 (α,T ) be convex and

compact, then Assumption 7c may be relaxed to the following requirements: 1) T0 is

convex and compact, and 2) Tk, ∀k ∈ N[1,N ] is convex and closed.

4.5.5 Underapproximative Interpolation

Next, we address Problem 4 using Theorem 8 under Assumption 7. Theorem 8

states that given the polytopic representations of Lπ∗k (α1,T ) and Lπ∗k (α2,T ), we can

compute the convex combination of the vertices of these polytopes using a specific

weight θ to construct a polytopic underapproximation of Lπ∗k (β,T ), β ∈ [α1, α2]. For

a collection of K points y(i) ∈ Rn, recall that convi∈N[1,K]
(y(i)) denotes their convex

hull (2.5), which is a polytope.

Theorem 8. Suppose Assumption 7 holds and let k ∈ N[0,N ] and K ∈ N, K > 0.

Given α1, α2 ∈ (0, 1], let α1 < α2, x
(1)
1 , . . . , x

(K)
1 ∈ Lπ∗k (α1,T ) and x

(1)
2 , . . . , x

(K)
2 ∈

Lπ∗k (α2,T ).
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For any β ∈ [α1, α2], convi∈N[1,K]
(y(i)) ⊆ Lπ∗k (β,T ) where

y(i) = θx
(i)
1 + (1− θ)x(i)

2 , ∀i ∈ N[1,K], and (4.11)

θ =
log(α2)− log(β)

log(α2)− log(α1)
∈ [0, 1]. (4.12)

Proof: By definition of x
(i)
1 , x

(i)
2 , V ∗k

(
x

(i)
1

)
≥ α1 > 0 and V ∗k

(
x

(i)
2

)
≥ α2 > 0 for

every i ∈ N[1,K]. Note that for θ defined by (4.12), θ ∈ [0, 1] and β = αθ1α
(1−θ)
2 .

Since xθ for x > 0 and θ ∈ [0, 1] is nondecreasing, we have
(
V ∗k

(
x

(i)
1

))θ
≥

αθ1 > 0,
(
V ∗k

(
x

(i)
2

))(1−θ)
≥ α

(1−θ)
2 > 0, and

(
V ∗k

(
x

(i)
1

))θ(
V ∗k

(
x

(i)
2

))(1−θ)
≥ αθ1α

(1−θ)
2

by [Tao06b, Prop. 5.4.7e]. By log-concavity of V ∗k (·) (Theorem 6) and the definition

of y(i) in (4.11), we have, for every i ∈ N[1,K],

V ∗k
(
y(i)
)

= V ∗k

(
θx

(i)
1 + (1− θ)x(i)

2

)
≥
(
V ∗k

(
x

(i)
1

))θ(
V ∗k

(
x

(i)
2

))(1−θ)
≥ αθ1α

(1−θ)
2 = β.

Hence, x(1), . . . , x(K) ∈ Lπ∗k (β,T ). The proof is completed by the noting that the

convex hull of a finite collection of points in a convex set is contained in the set [BV04,

Sec. 2.1.4].

We summarize the sufficient conditions for existence, measurability, continuity,

and log-concavity of V ∗k (·) and closedness, compactness, and convexity of Lπ∗k (α,T )

in Table 4.1. Table 4.1 and Theorem 8 addresses Problem 3.

4.6 Underapproximative Verification with Open-

Loop Controllers

In stochastic reachability problems, we are typically interested in either an exact

computation or an underapproximation. In safety problems, we do not want to over-

estimate our probability of safety, while underestimating the probability of safety is

potentially useful. This trend holds for the stochastic reach set computation as well.
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In this section, we use open-loop controllers to compute an underapproximation to

maximal reach probability (4.2) and the stochastic reach set (4.5), discuss its com-

pactness and convexity properties, and propose a scalable, grid-free, and anytime

algorithm to compute the stochastic reach set.

4.6.1 Open-Loop Controller Synthesis

In [LOE13; VO17], the authors proposed a tractable solution to the stochastic reach-

avoid problem by restricting the search for the optimal control policy to open-loop

control policies. An open-loop policy ρ : X → UN provides a sequence of inputs

ρ(x0) = [u>0 u>1 . . . u>N−1]
>

for every initial condition x0. Note that all actions of

this policy are contingent only on the initial state, and not the current state, as in a

Markov policy (see Section 2.5.2). The random vector describing the extended state

X, under the action of U = ρ(x0), lies in the probability space (XN ,B(XN),Px0,U
X ),

with Px0,U
X defined using Qk [BS78, Prop. 7.45]. For an initial state x0 ∈ T0 (otherwise,

the reach probability is zero), the reach probability under ρ(·) is given by

rρx0
(T ) , Px0,U

X

{
∀k ∈ N[0,N ], xk ∈ Tk

}
. (4.13)

The probability measure Px0,U
X in (4.13) is linked to the forward stochastic reach

probability measure [VHO17; VO18a]. For linear systems, Px0,U
X can be computed

for arbitrary disturbances using Fourier transforms. Denoting the optimal open-loop

controller by ρ∗, we define W ∗
0 (·) : X → [0, 1] as,

W ∗
0 (x0) , rρ

∗

x0
(T ) = sup

ρ(x0)=U∈UN
rρx0

(T ). (4.14)

where W ∗
0 : X → [0, 1] is the maximal reach probability attained by evolving (2.17)

from x0, when restricted to open-loop controllers. Similarly to (4.3), we define Wk :
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X × UN−k → [0, 1], ∀k ∈ N[0,N−1],

WN−1(x, uN−1) = 1TN−1
(x)

∫
X

1TN (y)Qk(y|x, uN−1) (4.15a)

Wk(x, Uk:N) = 1Tk(x)

∫
X
Wk+1(y, Uk+1:N)Qk(y|x, uk) (4.15b)

W ∗
0 (x0) = sup

U∈UN
W0(x0, U) (4.15c)

where Uk:N = [u>k u>k+1 . . . u>N−1]
> ∈ UN−k, ∀k ∈ N[0,N−1], U = U0:N ∈ UN , and

UN−1:N = uN−1 ∈ U . In contrast to V ∗k (·) in (4.3), Wk(·) are not optimal value

functions, as there is no optimization. Since rρx0
(T ) = W0(x0, U) for ρ(x0) = U ∈ UN ,

the optimization problems (4.14) and (4.15c) are equivalent. Similarly to (4.6), we

define the α-superlevel set of rρ
∗

x0
(T ) as Kρ

∗

0 (α,T ),

Kρ
∗

0 (α,T ) = {x0 ∈ X : rρ
∗

x0
(T ) ≥ α}. (4.16)

Theorem 9 addresses Problem 5.a by carrying forward all the results in Section 4.5

for the open-loop controller-based underapproximations (4.14) and (4.16).

Theorem 9. a. Under Assumption 4 or Assumption 5, (4.14) is well-posed. Un-

der Assumption 4, W ∗
0 (·) is Borel-measurable, and under Assumption 5, W ∗

0 (·)

is upper semi-continuous.

b. Under Assumption 6, (4.14) is a log-concave optimization problem, W0(·, ·) is

log-concave over X × UN , and W ∗
0 (·) is log-concave over X .

c. Under Assumption 7, Kρ
∗

0 (α,T ), ∀α ∈ (0, 1] is convex and compact.

d. Under Assumption 7, Kρ
∗

0 (α,T ), ∀α ∈ (0, 1] can be underapproximated by

interpolating the vertices of polytopic (underapproximative) representations of

Kρ
∗

0 (α1,T ) and Kρ
∗

0 (α2,T ), as described in Theorem 8.
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Proof: Proof of a) with Assumption 4 : Similarly to the proof of Theorem 4, we

can show by induction and Definition 2a that W0(x0, U) is continuous (and thereby

upper semi-continuous) in UN for every x0 ∈ X when Qk is input-continuous. Hence,

by [HPV76, Thm. 2], we know that (4.15c) (and thereby (4.14)) is well-posed,

and an optimal Borel-measurable open-loop controller ρ∗ exists and W ∗
0 (·) is Borel-

measurable.

Proof of a) with Assumption 5 : Similarly to the proof of Theorem 5, we can

show by induction and Proposition 10 that W0(x0, U) is upper semi-continuous in

X × UN and is bounded and nonnegative, when Tk is closed and fk is continuous.

Hence, by [BS78, Prop. 7.33], we know that (4.15c) (and thereby (4.14)) is well-posed,

and an optimal Borel-measurable open-loop controller ρ∗ exists, and W ∗
0 (·) is upper

semi-continuous.

Proof of b): Similarly to the proof of Theorem 6, we can show by induction and

Proposition 12 that W0(x0, U) is log-concave in X × UN when Tk is convex and ψw,k

is log-concave. Note that UN is convex since U is convex [BV04, Sec. 2.3.2]. Hence,

(4.15c) (and thereby (4.14)) is a log-concave optimization. Since partial supremum

over convex sets preserves log-concavity [BV04, Sec. 3.2.5, 3.5], W ∗
0 (·) is log-concave

over X .

Proof of c): From Proposition 9a and 9b and the fact that Assumption 7 is a special

case of Assumptions 5 and 6 (see Figure 4.2), Kρ
∗

0 (α,T ), ∀α ∈ [0, 1] is convex and

closed by (4.16). Similar to Lemma 6, we note that Kρ
∗

0 (α,T ) ⊆ T0. The compactness

assumption of T0 in Assumption 7 completes the proof, as in Proposition 11.

Proof of d): From Proposition 9c and the discussion in Section 4.5.4, we know that

polytopic underapproximations exist for Kρ
∗

0 (α,T ). The proof, similar to Theorem 8,

follows from the log-concavity of W ∗
0 .
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4.6.2 Underapproximation Guarantees

We next address Problem 5 using Theorem 10. We first show that the value functions

Wk(·) are underapproximations of the optimal value functions V ∗k (·) in Proposition 13.

Proposition 13. Under Assumption 4 or 5, Wk(x, Uk:N) ≤ V ∗k (x), ∀k ∈ N[0,N−1],

∀Uk:N ∈ UN−k and ∀x ∈ X .

Proof: (By induction) We first prove the base case k = N − 1, i.e.,

WN−1(x, UN−1:N) ≤ V ∗N−1(x). From (4.3a) and (4.15a), WN(x) = V ∗N(x), ∀x ∈ X . By

[Tao06b, Prop. 19.3.3d], for every (x, u) ∈ X × U , we have
∫
X WN(y)QN−1(dy|x, u)

=
∫
X V

∗
N(y)QN−1(dy|x, uN−1) ≤ supuN−1∈U

∫
X V

∗
N(y)QN−1(dy|x, uN−1). By (4.3b),

(4.15b), and the fact that indicator functions are non-negative, we have

WN−1(x, UN−1:N) ≤ V ∗N−1(x) for every x ∈ X , UN−1:N ∈ U .

Assume for induction, the case k = t (t ∈ N[0,N−2]) is true, i.e., Wt+1(x, U t+1:N) ≤

V ∗t+1(x). By [Tao06b, Prop. 19.3.3c], for every (x, U t:N) ∈ X × UN−t, we have∫
X Wt+1(y, U t+1:N)Qt(dy|x, ut) =

∫
X V

∗
t+1(y)Qt(dy|x, ut) ≤

suput∈U
∫
X V

∗
N(y)Qt(dy|x, ut). The proof is completed by (4.3b), (4.15b), and the

fact that indicator functions are non-negative.

We require the assumptions of Assumption 4 or 5 to ensure that (4.14) is well-

posed (Theorem 9a).

Theorem 10. Under Assumption 4 or 5, W ∗
0 (x) ≤ V ∗0 (x), ∀x ∈ X , and Kρ

∗

0 (α,T ) ⊆

Lπ∗0 (α,T ), ∀α ∈ [0, 1].

Proof: By Proposition 13, we know that W0(x, U) ≤ V ∗0 (x) for every x ∈ X

and U ∈ UN . By (4.15c) and the definition of the supremum, we have W ∗
0 (x) =

supU∈UN W0(x, U) ≤ V ∗0 (x) Consequently, we have Kρ
∗

0 (α,T ) ⊆ Lπ∗0 (α,T ), ∀α ∈

[0, 1] by (4.6) and (4.16).
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4.7 Underapproximative Verification with Affine

Feedback Controllers

4.7.1 Affine Feedback Controller Synthesis

The optimization problem (4.17) constructs an ADF controller (2.23a) to maximize

the reach probability. Instead of saturating the ADF controller to satisfy hard control

bounds, we require the ADF controller to meet a chance constraint relaxation of the

hard control bounds for tractability.

minimize
M,D

Px0,M,D
X {X ∈ T } (4.17a)

subject to X = Āx0 +HU + EW (4.17b)

U = MW +D, M,D satisfies (2.23) (4.17c)

W ∼ N (µW , CW ) (4.17d)

PM,D
U

{
U ∈ UN

}
≥ 1−∆U (4.17e)

where ∆U ∈ [0, 1) is a user-specified threshold for the probabilistic relaxation of

the hard control bounds U ∈ UN and initial state x0 ∈ T0 (otherwise, the reach

probability is zero). The constraint (4.17e) prescribes a lower bound of 1−∆U on the

probability that the ADF controller satisfies the hard control bounds. Equivalently,

∆U is the maximum likelihood with which the ADF controller can violate the hard

control bounds. Thus, (4.17) addresses Problem 6.a. Note that setting ∆U = 1 will

trivialize the constraint (4.17e).

We denote the optimal solution of (4.17) as M
∗

and D
∗
. The corresponding

optimal value function rM
∗
,D
∗

x0
(T ; ∆U) : X → [0, 1] is parameterized by ∆U ,

rM
∗
,D
∗

x0
(T ; ∆U) = Px0,U

X

{
X ∈ T

∣∣∣U = M
∗
W +D

∗
}

(4.18)

105



CHAPTER 4. STOCHASTIC REACHABILITY OF A TARGET TUBE: THEORY AND CONTROL

with PM
∗
,D
∗

U

{
M
∗
W +D

∗ ∈ UN
}
≥ 1 − ∆U due to (4.17e). By construction,

rM
∗
,D
∗

x0
(T ; ∆U) is the optimal reach probability obtained using the ADF controller

(M
∗
, D
∗
). Note that rM

∗
,D
∗

x0
(T ; ∆U) does not discount the improvement in the reach

probability when the ADF controller violates the hard control bounds. Theorem 11

addresses Problem 6.

Theorem 11. Let Assumption 5 hold. For rM
∗
,D
∗

x0
(T ; ∆U) ≥ ∆U ,

rπ
∗

x0
(T ) ≥

rM
∗
,D
∗

x0
(T ; ∆U)−∆U

1−∆U

. (4.19)

Proof: We will first show that

rπx0
(T ) ≥ Px0,M

∗
,D
∗

X

{
X ∈ T

∣∣U ∈ UN} , (4.20)

and then subsequently obtain (4.19) using rM
∗
,D
∗

x0
(T ; ∆U) and ∆U .

By Lemma 8, there always exist a general policy π′ = U such that rπx0
(T ) =

rπ
′
x0

(T ) = Px0,U
X

{
X ∈ T

∣∣U ∈ UN}. We have (4.20), since (M
∗
, D
∗
) imposes addi-

tional constraints (2.23a) on π′ and U . Here, Px0,M
∗
,D
∗

X

{
X ∈ T

∣∣U ∈ UN} is the

optimal safety probability via the ADF controller (M
∗
, D
∗
) when it simultaneously

satisfies the hard control bounds.

By the law of total probability,

Px0,M
∗
,D
∗

X {X ∈ T } = Px0,M
∗
,D
∗

X

{
X ∈ T

∣∣U ∈ UN}PM∗,D∗U

{
U ∈ UN

}
+ Px0,M

∗
,D
∗

X

{
X ∈ T

∣∣U 6∈ UN}PM∗,D∗U

{
U 6∈ UN

}
. (4.21)

Since (M
∗
, D
∗
) satisfies (4.17e), PM

∗
,D
∗

U

{
U ∈ UN

}
= 1−∆U +εU where εU ∈ [0,∆U ],

accounts for the potential slack in (4.17e). In other words,

PM
∗
,D
∗

U {U ∈ UN} = 1− (∆U − εU), and PM
∗
,D
∗

U {U 6∈ UN} = (∆U − εU) (4.22)
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Figure 4.3: Variation of the lower bound (4.19) on rπ
∗
x0

(T ) with the optimal solution

to (4.17) rM
∗
,D
∗

x0
(T ; ∆U) for different values of ∆U . As expected, the lower bound

becomes trivial as ∆U increases.

Since Px0,M
∗
,D
∗

X

{
X ∈ T

∣∣U 6∈ UN} ∈ [0, 1], we can use (4.18), (4.21), and (4.22) to

upper bound rM
∗
,D
∗

x0
(T ; ∆U), the optimal value of (4.17),

rM
∗
,D
∗

x0
(T ; ∆U) ≤ Px0,M

∗
,D
∗

X

{
X ∈ T

∣∣U ∈ UN} (1− (∆U − εU)) + (∆U − εU).

(4.23)

On rearranging the terms in (4.23) and using the fact that εU ≥ 0,

Px0,M
∗
,D
∗

X

{
X ∈ T

∣∣U ∈ UN} ≥ 1−
1− rM

∗
,D
∗

x0
(T ; ∆U)

1− (∆U − εU)

≥ 1−
1− rM

∗
,D
∗

x0
(T ; ∆U)

1−∆U

=
rM
∗
,D
∗

x0
(T ; ∆U)−∆U

1−∆U

. (4.24)

The requirement of rM
∗
,D
∗

x0
(T ; ∆U) ≥ ∆U ensures that the lower bound (4.24) is

nonnegative. We have (4.19) from (4.20) and (4.24).

Figure 4.3 shows the lower bounds on rπ
∗
x0

(T ) produced by (4.19) for different

values of ∆U and rM
∗
,D
∗

x0
(T ; ∆U). As an example, we obtain a lower bound for rπ

∗
x0

(T )
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of 0.75 for ∆U = 0.2 and rM
∗
,D
∗

x0
(T ; ∆U) = 0.8. Intuitively, using smaller values of

∆U (lower violation probability) should provide more informative lower bounds on

rπ
∗
x0

(T ). By (4.17e), a smaller value of ∆U forces the affine disturbance feedback to be

more “compliant” with the hard control bounds. From Figure 4.3, we see an increase

in the rate at which the lower bound (4.19) diminishes to zero (trivial lower bound)

as ∆U increases (relaxation of the control bounds).

4.8 Summary

This chapter provides the theoretical framework for the problem of stochastic reach-

ability of a target tube. Specifically, we identify sufficient conditions under which

the stochastic reach set is closed, bounded, compact, and convex. Using these con-

vexity and compactness properties, we describe an underapproximative interpolation

technique for the stochastic reach sets. We also construct underapproximative guar-

antees for the maximal reach probability using point-based stochastic reachability

evaluations (open-loop and affine feedback controller synthesis).
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Chapter 5

Stochastic Reachability of a Target
Tube: Computation

5.1 Introduction

This chapter builds on the results presented in Chapter 4 to propose four novel ap-

proaches for controller synthesis for the stochastic reachability of a target tube. Our

approaches are grid-free and scale well with dimension, when compared to the current

state-of-the-art dynamic programming-based approaches [Aba+07; Aba+08; SL10].

Our algorithms rely on convex optimization, stochastic programming, and Fourier

transforms to compute underapproximations to the maximal reach-probability as well

as synthesize open-loop or affine-feedback controllers. We also combine these point-

based verification and controller synthesis techniques with a ray-shooting algorithm

(Figure 2.1) to underapproximate the sets in a scalable, grid-free, and anytime algo-

rithm. This approach enables, for the first time, the verification of systems as high

as 40-dimensions. All algorithms presented in this chapter has been implemented in

SReachTools, an open-source MATLAB toolbox (see Chapter 6).

Recall that Gaussian probability density is log-concave [BV04, Sec. 3.5]. We will

make the following assumption (a special case of Assumption 7) for tractability.

Assumption 8. We presume the dynamics are linear (potentially time-varying)
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(2.19) with (not necessarily independent or identical) Gaussian disturbance wk, and

the target sets that compose the target tube T and the input space U are polytopic.

Under this assumption, the concatenated disturbance random vector

W = [w>0 w
>
1 . . . w>N−1]

>
is also a Gaussian random vector [Gub06, Ch. 9]. Here,

W ∼ N (µW , CW ) with µW ∈ RpN and CW ∈ RpN×pN ; CW is positive semi-definite,

and PW denotes the probability measure of W . Due to the linearity of the system

(2.19), X is also Gaussian [Gub06, Sec. 9.2]. The stochasticity of X and U is given

(2.27) and (2.28) respectively. Additionally, X ∈ T and U ∈ UN are equivalent to

GX ≤ h and PX ≤ q for some known G = [g>0 g>1 · · · g>LX ]
> ∈ RLX×nN , h ∈ RLX ,

P = [p>0 p>1 · · · p>LU ]
> ∈ RLU×mN , q ∈ RLU , LX , LU ∈ N, and LX , LU > 0.

5.2 Related Work

We can compute the maximal reach probability and the reach sets for low-dimensional

systems using dynamic programming by gridding the state space [SB98; Aba+07].

The reliance on a grid over the state space translates to an exponentially increas-

ing computational cost as the system dimension increases, making this approach in-

tractable for system dimensions higher than three or four. Researchers have focused

on alleviating this curse of dimensionality via approximate dynamic programming

[KML16; Man+15], Gaussian mixtures [KML16], particle filters [Man+15; LOE13],

convex chance-constrained optimization [LOE13], Fourier transforms and open-loop

controllers [VO17; VO18b], set-theoretic (Lagrangian) approaches [GVO17], and

semi-definite programming [Drz+16; Kar+17].

With respect to controller synthesis, almost all of these approaches seek open-

loop control laws for tractability, at the cost of significant conservativeness [VO17;

LOE13]. Approximate dynamic programming techniques can synthesize closed-loop

controllers by parameterizing the policy space [Man+15; Kar+17]. However, these
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approximation approaches do not guarantee an underapproximation of the safety

probability. This limits its application to safety-critical applications, where we can

not afford to be overconfident with the degree of safety.

In the past few decades, the controller synthesis problem for stochastic optimal

control problems has received a lot of attention. Specifically, techniques based on

stochastic receding horizon control (also known as stochastic model predictive control)

have been developed that can synthesize (sub)optimal controllers to drive the system

while satisfying the stochastic dynamics, probabilistic state and input constraints, and

minimizing a cost function. See [Mes16; FGS16] for recent surveys on this problem.

However, these techniques can not be used to compute the set of good initial states

which is the main focus of this chapter.

A related problem of robust reachability of a target tube has been discussed

in [BR71; Ber72]. Here, the state of a bounded non-stochastic uncertainty-perturbed

system must be steered to lie within a target tube, for all possible realizations of the

uncertainty. This work utilizes computational geometry to construct the reach sets,

and has been extended for the case of stochastic reach-avoid problems in [GVO17].

However, its reliance on vertex-facet enumeration precludes computation on problems

with large time horizons or small sets in the target tube. Other techniques using com-

putational geometry (ellipsoids, zonotopes, and support functions) are available for

linear systems [Gir05; KV00; LGG09]. For the case of non-stochastic uncertainty, sev-

eral approaches based on robust optimal control exist to identify the backward reach

sets. For continuous time systems, techniques using Hamilton-Jacobi formulation and

level set techniques have been proposed [MBT05].
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5.3 Problem Statements

Problem 7. Solve the chance-constraint formulation (5.8) for affine controller syn-

thesis using difference of convex programming and piecewise affine approximations.

Problem 7.a. Propose an algorithm to construct a piecewise-affine overapproxima-

tion of the convex function Φ−1(1− z) for z ∈ [δlb, 0.5] and some δlb > 0.

Problem 7.b. Cast the chance constraint optimization problem obtained in Prob-

lem 6.a by reformulating it into an equivalent difference of convex program.

Problem 7.a is motivated by the need for a conic representation of (5.8e) and (5.8f).

This will enable the use of standard convex solvers. Recall that two optimization

problems are equivalent if an optimal solution to one can be used to readily find an

optimal solution to the other [BV04, Sec. 4.1.3].

Problem 8. Discuss three approaches to perform open-loop controller synthesis using:

1. Fourier transforms and log-concave optimization (Theorem 9b).

2. a chance-constraint formulation and piecewise-affine approximations, where

(5.8) is reformulated as a linear program with M = 0.

3. a mixed-integer linear program formulation, with the scenarios undersampled

using Voronoi partitions.

Problem 9. Propose a scalable, grid-free, and anytime algorithm to compute a open-

loop controller-based polytopic underapproximation to Lπ∗0 (α,T ), ∀α ∈ [0, 1].

5.4 Piecewise-Affine Overapproximation of a Con-

vex Function

Recall that Φ−1(1 − z) is convex z ∈ [0, 0.5]. The convexity of Φ−1(1 − z) follows

from its non-negative Hessian over z ∈ [0, 0.5] [BV04, Sec. 3.1]). An intuition on its
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convexity may also be obtained by visual inspection in Figure 5.1. The convexity of

Φ−1(1 − z) implies the following constraint with decision variables z ∈ [0, 0.5], s ≥ 0

is convex,

Φ−1(1− z) ≤ s, z ∈ [0, 0.5]. (5.1)

Note that (5.1) does not have a exact conic reformulation. This prevents us from

using standard convex solvers like Gurobi [Gur15], when solving convex optimization

problems with constraints of the form (5.1). To address this challenge, we seek to

construct `+
Φ(z), a piecewise affine overapproximation of Φ−1(1 − z). This ensures

that (5.1) can be enforced using a collection of linear constraints, since

`+
Φ(z) ≤ s⇒ Φ−1(1− z) ≤ s (5.2)

for any z ∈ [0, 0.5], s ≥ 0. We restrict the domain of the piecewise-affine overap-

proximation `+
Φ(z) of Φ−1(1 − z) to z ∈ [δlb, 0.5] for a small δlb ∈ R, δlb > 0 since

Φ−1(1− z)→∞ as z → 0+. For a user-specified maximum overapproximation error

η > 0, we wish to compute m+
j , c

+
j ∈ R, and NΦ ∈ N and NΦ > 0, such that

`+
Φ(z) , max

j∈N[1,NΦ]

{m+
j z + c+

j }, and 0 ≤ `+
Φ(z)− Φ−1(1− z) ≤ η, ∀z ∈ [δlb, 0.5]. (5.3)

Given z1 ∈ [δlb, 0.5] and h > 0, we define `+
Φ(z) for z ∈ [z1, z1 + h] as the line

segment joining (z1,Φ
−1(1 − z1)) and (z1 + h,Φ−1(1 − (z1 + h))). By the Lagrange

remainder theorem [AS65, Eq. 25.2.3], there exists z3 ∈ [z1, z1 +h] such that for every

z ∈ [z1, z1 + h],

`+
Φ(z)− Φ−1(1− z) ≤ (z − z1)(z1 + h− z)∇2Φ−1(1− z3)

2
. (5.4)
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Figure 5.1: Piecewise-affine overapproximation `+
Φ(z) of the function Φ−1(1− z) for a

maximum overapproximation error η ∈ {10−3, 1}. The plot above compares the `+
Φ(z)

with Φ−1(1− z). The plot below shows the overapproximation error.

We simplify (5.4) to a simple upper bound on the overapproximation error by max-

imizing the right hand size of (5.4) for z, z3 ∈ [z1, z1 + h]. Since the Hessian of

Φ−1(1− z) is monotone decreasing in z, maxz3∈[z1,z1+h]∇2Φ−1(1− z3) = Φ−1(1− z1).

In addition, we have maxz∈[z1,z1+h](z − z1)(z1 + h− z) = h2/4. Therefore, for every

z ∈ [z1, z1 + h],

0 ≤ `+
Φ(z)− Φ−1(1− z) ≤ h2

8
∇2Φ−1(1− z1) (5.5)

by (5.4) and the convexity of Φ−1(1− z) [BV04, Sec. 3.1.1].

Algorithm 5 solves for z1, h iteratively by starting from z1 = δlb and setting the

error bound (5.5) to the user-specified threshold η. Figure 5.1 shows the quality of

the piecewise-affine overapproximation of the function Φ−1(1 − z) for η ∈ {10−3, 1}

obtained via Algorithm 5. Algorithm 5 addresses Problem 7.a.

Note that the ideas discussed in this section can be easily generalized to compute

a piecewise-affine overapproximation for an arbitrary convex function. Further, using
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Algorithm 5 Construction of a piecewise-affine overapproximation of Φ−1(1− z)

Input: A maximum overapproximation error η > 0
Output: Piecewise affine overapproximation `+

Φ(z)
1: z0 ← δlb and j ← 0
2: while zj < 0.5 do

3: h← min
(√

8∗η
∇2Φ−1(1−z1)

, zmax − zj
)

, zj+1 ← zj + h

4: m+
j ←

Φ−1(1−zj+1)−Φ−1(1−zj)
h

, c+
j ←

Φ−1(1−zj+1)zj−(zj+1)Φ−1(1−zj)
h

5: Increment j by 1
6: end while
7: NΦ ← j, `+

Φ(z)← maxj∈N[1,NΦ]
{m+

j z + c+
j }

first-order Taylor approximation, one can construct a piecewise affine underapprox-

imation of a convex function. Similar approaches can be used for approximation of

concave functions. See [VSO19] for more details.

5.5 Affine Feedback Controller Synthesis: Compu-

tation

5.5.1 Affine Feedback Controller Synthesis via Chance Cons-
traints-Based Restriction

Motivated by [LOE13; Old+14], we consider (5.6), a well-studied restriction of chance-

constraint problems of the form (4.17). This reformulation is known as the quantile

function-based reformulation [Old+14] or risk allocation technique [VT11].

minimize
∑LX

i=1
αi (5.6a)

subject to M,D satisfies (2.23) (5.6b)

µx0,M,D
X , µM,D

U , CM
X , C

M
U satisfy (2.27b) and (2.28b) (5.6c)

α ∈ [0, 0.5]LX , β ∈ [0, 0.5]LU , x0 ∈ T0 (5.6d)∑LX

i=1
αi ≤ 1−∆U ,

∑LU

i=1
βi ≤ ∆U (5.6e)

g>i µ
x0,M,D
X +

√
g>i C

M
X giΦ

−1 (1− αi) ≤ hi, ∀i ∈ N[1,LX ] (5.6f)

p>i µ
M,D
U +

√
p>i C

M
U piΦ

−1 (1− βi) ≤ qi, ∀i ∈ N[1,LU ] (5.6g)
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with decision variables M , D, α, β, µx0,M,D
X , µM,D

U , CM
X , and CM

U . Here, α =

[α1 α2 . . . αLX ]> and β = [β1 β2 . . . βLX ]> are maximum violation probability

thresholds for the linear constraints GX ≤ h and PU ≤ q, and Φ−1(·) is the in-

verse of the standard normal cumulative density function, also known as the quantile

function.

Proposition 14. Every feasible solution of (5.6) is a feasible solution of (4.17) with

rM
∗
,D
∗

x0
(T ; ∆U) ≥ 1−

∑LX
i=1 α

∗
i .

Proposition 14 follows from the fact that: 1) Gaussian random vectors are com-

pletely characterized by their mean and covariance, enforced in (5.6c), and 2) we can

conservatively approximate constraints of the form (4.17e) using (5.6a) and (5.6d)–

(5.6g) via Boole’s inequality and properties of the Gaussian random vector. A con-

straint similar to (4.17e) is used for X instead of (4.17a) by reformulating (4.17) in

the epigraph form. The constraint
∑LX

i=1 αi ≤ 1−∆U arises from Theorem 11, which

requires ∆U ≤ rM
∗
,D
∗

x0
(T ; ∆U). For any random vector z with probability measure

Pz and Borel sets {Ai} with A = ∪iAi, Boole’s inequality states that

Pz{z ∈ A} ≤
∑
i

Pz{z ∈ Ai}. (5.7)

5.5.2 Reformulation to a Difference of Convex Program

The constraints (5.6f) and (5.6g) involve products of convex functions of the decision

variable, which makes asserting their convexity challenging. Therefore, we formulate
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the following equivalent difference of convex program,

minimize
∑LX

i=1
αi (5.8a)

subject to (5.6b), (5.6c), (5.6d), (5.6e) (5.8b)√
g>i C

M
X gi ≤ sX,i, ∀i ∈ N[1,LX ] (5.8c)√

p>i C
M
U bi ≤ sU ,i, ∀i ∈ N[1,LU ] (5.8d)

Φ−1 (1− αi) ≤ tX,i, ∀i ∈ N[1,LX ] (5.8e)

Φ−1 (1− βi) ≤ tU ,i, ∀i ∈ N[1,LU ] (5.8f)(
g>i µ

x0,M,D
X +

(sX,i + tX,i)
2

2

)
−
(
hi +

s2
X,i + t2X,i

2

)
≤ 0, ∀i ∈ N[1,LX ]

(5.8g)(
p>i µ

M,D
U +

(sU ,i + tU ,i)
2

2

)
−
(
qi +

s2
U ,i + t2U ,i

2

)
≤ 0, ∀i ∈ N[1,LU ]

(5.8h)

with decision variables M , D, α, β, µx0,M,D
X , µM,D

U , CM
X , CM

U , sX , sU , tX , and tU .

Here, s(·) = [s(·),1 s(·),2 . . . s(·),L(·) ] ∈ RL(·) and t(·) = [t(·),1 t(·),2 . . . t(·),L(·) ] ∈ RL(·) .

Theorem 12. Problem (5.8) is a difference of convex program, and it is equivalent

to (5.6).

Proof: Difference of convex program: The cost (5.8a) and the constraints

(5.8b)–(5.8f) are convex. The constraints (5.8g) and (5.8h) are difference of con-

vex constraints of the form (2.14b), since sums of convex functions and composition

of convex functions with affine transformations are convex [BV04, Sec. 3.2].

Equivalence: As discussed in Section 2.4.2, the constraint (5.8g) simplifies to

g>i µ
x0,M,D
X + sX,itX,i ≤ hi. From (5.8c) and (5.8e), the constraint (5.6f) is related to
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the constraint (5.8g) by (using µX for µx0,M,D
X )

g>i µX+

√
g>i C

M
X giΦ

−1 (1− αi) ≤ g>i µX + sX,itX,i ≤ hi. (5.9)

A similar relation can be derived for the input chance constraints (5.6g) using (5.8d)

and (5.8f) as well. All other constraints (5.8b) and the objective functions are identi-

cal. Therefore, every optimal solution of (5.6) is an optimal solution of (5.8) with the

values for the slack variables s(·) and t(·) computed from (5.8c)–(5.8f). Similarly, every

optimal solution of (5.8) satisfies (5.6) by (5.9). Thus, (5.6) and (5.8) are equivalent

optimization problems.

Theorem 12 addresses Problem 7.b.

5.5.3 Convexification to a Second-Order Cone Problem

Algorithm 1 iteratively convexifies the non-convex problem (2.14) by linearizing the

non-convex terms about a solution iterate. In its current form, we can not solve (5.8)

using Algorithm 1 and standard convex solvers. This is because the constraints (5.8e)

and (5.8f) do not have a conic reformulation. Using (5.2) and (5.3), we tighten the

constraints (5.8e) and (5.8f) and replace it with their piecewise-affine restrictions,

m+
j αi + c+

j ≤ tX,i, ∀i ∈ N[1,LX ],∀j ∈ N[1,NΦ] (5.10a)

m+
j βi + c+

j ≤ tU ,i, ∀i ∈ N[1,LU ],∀j ∈ N[1,NΦ]. (5.10b)
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For sake of clarity, we include the convex subproblem, corresponding to (5.8), that

needs to be solved iteratively as done in Algorithm 1.

minimize
∑LX

i=1
αi (5.11a)

subject to (5.6b), (5.6c), (5.6d), (5.6e), (5.10a), (5.10b) (5.11b)∥∥∥∥(CM
X

) 1
2
gi

∥∥∥∥
2

≤ sX,i, ∀i ∈ N[1,LX ],

∥∥∥∥(CM
U

) 1
2
pj

∥∥∥∥
2

≤ sU ,j, ∀j ∈ N[1,LU ]

(5.11c)

g>i µ
x0,M,D
X +

(sX,i + tX,i)
2

2
− hi −

(
s

(k)
X,i

)2

+
(
t
(k)
X,i

)2

2

− s(k)
X,i(sX,i − s(k)

X,i)− t
(k)
X,i(tX,i − t(k)

X,i) ≤ 0, ∀i ∈ N[1,LX ] (5.11d)

p>i µ
M,D
U +

(sU ,i + tU ,i)
2

2
− qi −

(
s

(k)
U ,i

)2

+
(
t
(k)
U ,i

)2

2

− s(k)
U ,i(sU ,i − s

(k)
U ,i)− t

(k)
U ,i(tU ,i − t

(k)
U ,i) ≤ 0, ∀i ∈ N[1,LU ] (5.11e)

with decision variablesM , D, α, β, µx0,M,D
X , µM,D

U , CM
X , CM

U , sX , sU , tX , and tU . Here,

s
(k)
(·) , t

(k)
(·) refers to the slack variable values at different iterations in Algorithm 1. Note

that (5.11) is a second-order cone problem. The constraints (5.11d) and (5.11e) can be

reformulated as second-order cone constraints using the hyperbolic constraint [BV04,

Ex. 4.26]. For a vector x ∈ Rn and scalars y, z ∈ R (all can be decision variables),

the constraint

x>x ≤ yz ⇐⇒
∥∥∥[2x> y − z]

>
∥∥∥ ≤ y + z. (5.12)

Second order cone problems can be solved efficiently using standard convex solvers

[GB14; Gur15]. Problem (5.11) along with Algorithm 1 addresses Problem 7.
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5.5.4 Implementation Details

The user must specify the following parameters: an initial value for the decision

variables involved in the DC constraints s
(0)
(·) and t

(0)
(·) , the scaling sequence for the

slack penalty (τ0, γ, τmax), the parameters for the exit condition εdc and εviol, and the

user-defined overapproximation for η.

We repeat our recommendations for these parameters, as described in [VO19]. We

initialize s
(0)
(·) and t

(0)
(·) by solving the constraints (5.8c)–(5.8f) with zero feedback gain

M = 0nN×pN , and equally distributed risk allocations α = min
(

1−∆U

LX
, 0.5

)
1LX×1

and β = min
(

∆U

LU
, 0.5

)
1LU×1. Here, za×b is a a × b-dimensional matrix containing

the value z ∈ R. Alternatively, we can initialize these variables randomly [LB16,

Sec. 1.2]. For the remaining parameters of Algorithm 1, we chose τ0 = 1, γ = 2,

τmax = 105, εdc = 104, and εviol = 10−8. While different values for these parameters

result in different convergence rates, there is no clear consensus on how best to choose

these parameters. Finally, we chose the maximum overapproximation error for the

piecewise-affine overapproximation of Φ−1(1− z) as η = 10−3. As seen in Figure 5.1,

reducing η decreases the conservativeness introduced by the piecewise-affine approx-

imation. However, it increases NΦ, which in turn increases the computational effort

required to solve (5.8).

5.6 Open-Loop Controller Synthesis

In this section, we address Problem 8 by synthesizing open-loop controllers U ∈ UN

that maximize safety probability. Recall that affine controllers (2.23a) simplify to

open-loop controllers when M = 0. By (2.26) and (2.25), given an initial state

x0 ∈ X and an open-loop vector U ∈ UN , the concatenated state random vector X
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is a Gaussian under Assumption 8,

X ∼ N (µx0,U
X , CX), (5.13a)

µx0,U
X = A x0 +HU +GµW , CX = GCWG

>. (5.13b)

In contrast to the affine disturbance feedback controller synthesis, open-loop con-

troller synthesis can be accommodate hard control bounds. Specifically, instead of a

chance-constraint relaxation considered in (4.17), we consider the following optimiza-

tion problem (equivalent to (4.14)),

minimize
U

Px0,U
X {X ∈ T } (5.14a)

subject to (5.13), U ∈ UN , x0 ∈ T0 (5.14b)

Recall that (5.14) is a log-concave optimization problem (Theorem 9b). The optimal

value of (5.14), denoted by the value function W ∗
0 (x) : X → [0, 1], serves as a lower

bound to the maximal reach probability (4.1) by Theorem 10.

5.6.1 Fourier Transforms-Based Approach

By (5.13) and Assumption 8, we know that (5.14a) is the integral of a multivariate

Gaussian over a polytope. Additionally, by (5.13b), the open-loop controller U influ-

ences only µx0,U
X , the mean of X. Therefore, an approach to solve (5.14) would be

to perform a nonlinear optimization of (5.14a), which in turn may be evaluated by

numerical integration.

To compute (5.14a), we use Genz’s algorithm [Gen14], which is based on quasi-

Monte-Carlo simulations and Cholesky decomposition [Gen92]. Genz’s algorithm

provides an error estimate that is the result of a trade-off between accuracy and
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computation time. We set the number of particles for the Monte-Carlo simulation so

that the error estimate is less than some εgenz > 0. This results in a runtime evaluation

of Px0,U
X {X ∈ T } that is dependent on x̄0, unlike typical Monte-Carlo simulations.

Additionally, we optimize the logarithm of Px0,U
X {X ∈ T } instead of (5.14a), due

to the log-concavity of the problem. Therefore, we set Px0,U
X {X ∈ T } = εgenz if

Px0,U
X {X ∈ T } < εgenz.

While the convexity of the logarithm-based reformulation ensures a tractable,

globally optimal solution to (5.14), the lack of a closed-form expression for the ob-

jective (5.14a) requires black-box optimization techniques. Further, since Genz’s al-

gorithm enforces an accuracy of only εgenz, the log-concavity of Px0,U
X {X ∈ T } may

not be preserved in the implementation. Hence the ideal solver for Problem B should

handle the “noisy” evaluation of (5.14a) as an oracle, and solve a constrained opti-

mization problem.

While this approach is significantly simplified for a Gaussian disturbance, we can

in general utilize Fourier transforms (see Section 3.4.2) to compute the objective

(5.14a). Note that log-concavity of (5.14) extends to any disturbance with a log-

concave probability density function (Theorem 9b).

We use MATLAB’s patternsearch to solve Problem (5.14), because it is based

on direct search optimization [KLT03] and can handle estimation errors in (5.14a) effi-

ciently. The solver is a derivative-free optimizer and uses evaluations over an adaptive

mesh to obtain feasible descents towards the globally optimal solution. However, it

requires a larger number of function evaluations as compared to MATLAB’s fmincon.

Advantages and Limitations of this Approach

The main advantage of this approach is that it does not require gridding of the state,

input, or disturbance spaces. Additionally, due to its focus on x0, it can perform

safety analysis for an initial state of interest as opposed to the forced evaluation of
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safety of all the points in the state space like dynamic programming [Aba+07]. By

converting the stochastic reachability problem into an optimization problem involving

a multi-dimensional integral, this approach achieves higher computational speed at

lower memory cost for a given initial condition, which enables scalability.

While evaluating (5.14a) can be computationally expensive for arbitrary distur-

bances, for Gaussian disturbances we can compute (5.14a) efficiently. Further, since

the dimension of the integral in (5.14a) is nN , large n effectively limits the time

horizon N . Additionally, the lack of feedback in the controller used in (5.14), we can

not have a large time horizon N [LOE13].

5.6.2 Chance Constraints-Based Approach

Using risk allocation or quantile function-based reformulation (Section 5.5.1) and

piecewise affine approximations (Section 5.5), we can reduce (5.14) to a simple linear

program (5.15).

minimize
∑LX

i=1
αi (5.15)

subject to µx0,U
X = Āx0 +HU + EµW

PU ≤ q, α ∈ [0, 0.5]LX , (5.10a),
∑LX

i=1
α1 ≤ 1

g>i µ
x0,U
X + tX,i

√
g>i C

0
Xgi ≤ hi, ∀i ∈ N[1,LX ]

with decision variables µx0,U
X , U, α, and tX . A similar convex chance constraint based

open-loop controller synthesis technique was proposed in [LOE13]. However, the au-

thors did not utilize the quantile function-based reformulation. Instead, the authors

used MATLAB’s fmincon to solve their optimization problem which led to significant

numerical challenges. On the other hand, the linear program formulation (5.15) pro-

vides a significant improvement in computational tractability for open-loop controller

synthesis. Denoting the optimal risk allocation for (5.15) as α∗ and the associated
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optimal open-loop controller as U
∗
, we obtain an underapproximation of the maximal

reach probability W0(x0, U) ≥ 1−
∑LX

i=1 α
∗
i due to Boole’s inequality (5.7). Thus,

rπ
∗

x0
(T )(x0) ≥ 1−

∑LX

i=1
α∗i , ∀x0 ∈ X . (5.16)

Advantages and Limitations of this Approach

Similar to the Fourier transform approach (Section 5.6.1), the chance constraints-

based approach is grid-free and scales well. Since it is a linear program, this method

scales much better than the Fourier transform-based approach. Additionally, being

a point-based evaluation of stochastic reachability, it significantly outperforms the

dynamic programming in computation cost and memory when the safety of a given

initial state is of interest.

The Fourier transform-based approach can be interpreted as a joint chance con-

straint optimization approach, while (5.15) is an individual chance constraint-based

restriction. This restriction, derived via Boole’s inequality (5.7), can become overly

conservative under high violation probabilities of the individual hyperplanes g>i X ≤

hi.

5.6.3 Sampling-Based Approach

In [LOE13], a particle control approach was proposed to solve the following mixed-

integer program to obtain an approximation to (4.14),

maximize
z,X,U

∑Mparticles

i=1 zi

subject to z ∈ {0, 1}Mparticles

U ∈ UN

X
(i)

= A x0 +HU + EW
(i)
, ∀i ∈ N[1,Mparticles]

g>j X
(i) − hj ≤ C(1− zi), ∀i ∈ N[1,Mparticles],∀j ∈ N[1,LX ]

(5.17)
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where Mparticles is the user-specified number of scenarios considered, W
(i)

with i ∈

N[1,Mparticles] are Mparticles realizations of the concatenated disturbance vector W , and

C is a large constant.

This approach was further improved upon in [Sar+19]. Specifically, a lower bound

on the number of particles needed to bound the overapproximation error was obtained.

This lower bound, based on Hoeffding’s inequality, is independent of the stochasticity

of the disturbance. Additionally, a Voronoi partition-based undersampling technique

was developed to significantly improve the tractability of this approach using clus-

tering techniques. The resulting simpler mixed-integer linear program underapproxi-

mates the maximal reach probability estimated by (5.17).

Advantages and Limitations of this Approach

In contrast to the Fourier transform-based and chance-constrained-based approaches

(Section 5.6.1 and 5.6.2), sampling-based approach does not require Gaussianity as-

sumption on the disturbance for tractability. It allows approximation of the maximal

reach probability for linear systems with non-Gaussian disturbances. With a lower

bound available on the number of particles needed to achieve a desired overapproxi-

mation, the quality of the solution is also user-controlled.

The major drawback of this approach is its reliance on the mixed-integer lin-

ear program formulation, which requires significant computational efforts in some

cases [LOE13]. However, with the use of clustering techniques, tractable approxima-

tions are now possible.

5.7 Polytopic Underapproximation of Stochastic

Reach Set using Open-loop Controllers

Recall that the stochastic reach set is underapproximated by the open-loop controller-

based stochastic reach set, Kρ
∗

0 (α,T ) ⊆ Lπ∗0 (α,T ) (see Theorem 10). Given a finite
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Figure 5.2: Components of Algorithm 6. We compute W ∗
0 (xmax) by solving (5.18)

and then for each di ∈ D, compute vertices of Kρ
∗

0 (α,T ,D) by solving (5.19), and

construct Kρ
∗

0 (α,T ,D) by computing the convex hull of the computed vertices.

set D ⊂ X consisting of direction vectors d̄i, we propose Algorithm 6 to compute a

tight polytopic underapproximation of Kρ
∗

0 (α,T ) using the ray-shooting algorithm

(Figure 2.1):

1. find xmax = arg maxx∈X W
∗
0 (x); if W ∗

0 (xmax) < α, then Kρ
∗

0 (α,T ) = ∅; else,

continue,

2. obtain relative boundary points of the set Kρ
∗

0 (α,T ) via line searches from xmax

along the directions d̄i ∈ D, and

3. compute the convex hull of the computed relative boundary points to obtain a

polytope Kρ
∗

0 (α,T ,D).

Figure 5.2 illustrates these steps. By [BV04, Sec. 2.1.4], we have Kρ
∗

0 (α,T ,D) ⊆

Kρ
∗

0 (α,T ). We have equality when all of the extreme points of Kρ
∗

0 (α,T ) are discov-

ered by this approach (possible for a polytopic Kρ
∗

0 (α,T )) [Web94, Thm. 2.6.16]. The

steps 2) and 3) are enabled by the compactness and convexity of Kρ
∗

0 (α,T ) [VO18b,

Prop. 4] [Web94, Ch. 2].
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Compute xmax that Maximizes W ∗
0 (x)

We solve the following optimization problem

maximize
x,U,β

β

subject to

 x ∈ T0, U ∈ UN , β ∈ [0, 1],

W0(x, U) ≥ β, β ≥ α

(5.18)

We denote the optimal solution of (5.18) as xmax ∈ X (the maximizer of W ∗
0 (x)),

the associated optimal open-loop controller Umax ∈ UN , and the highest value of

maximal reach probability β∗ = W ∗
0 (xmax) with W ∗

0 (x) given by (4.15c) at k = 0.

The optimization problem (5.18) is (4.15c) written in the epigraph form [BV04, Eq.

4.11], with an additional constraint of W0(x, U)) ≥ α.

By Theorem 9b, applying log(·) to the constraint W0(x, U) ≥ β converts (5.18)

into a convex problem. The formulation of (5.18) ensures that if it is infeasible,

then Kρ
∗

0 (α,T ,D) and Kρ
∗

0 (α,T ) are empty. We cannot conclude that Lπ∗0 (α,T ) is

empty, because of the underapproximative nature of our approach (Theorem 10).

Compute Relative Boundary Points of Kρ
∗

0 (α,T ) via Line Searches

To compute the relative boundary points of Kρ
∗

0 (α,T ), we must solve for each i ∈

N[1,|D|]

maximize
θi,U i

θi

subject to

 U i ∈ UN , θi ∈ R, θi ≥ 0

W0(xmax + θid̄i, U i) ≥ α

. (5.19)

We denote the optimal solution of (5.19) as θ∗i and U
∗
i . The optimization problem

(5.19) is also known as a line search problem, an integral component of the gradient

descent algorithms [BV04, Sec. 9.3]. It may be solved exactly via convex optimization
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(by Theorem 9b and [BV04, Sec. 3.2.2]), or approximatively via backtracking line

search [BV04, Pg. 465]. Note that, by construction, W0(xmax +θ∗i d̄i, U
∗
i ) = α, and for

any ε > 0, W0(xmax + (θ∗i + ε)d̄i, U
∗
i ) < α. Hence, xmax + θ∗i d̄i ∈ ∂K

ρ∗

0 (α,T ), and the

optimal open-loop controller from this relative boundary point is ρ∗(xmax + θ∗i d̄i) =

U
∗
i [VO18b, Prop. 4].

Construction of Kρ
∗

0 (α,T ,D)

If (5.18) has a solution, we have W ∗
0 (xmax) ≥ α, and we construct the polytope

Kρ
∗

0 (α,T ,D) via the convex hull of the computed relative boundary points xmax +

θ∗i d̄i, ∀i ∈ N[1,|D|]. Since Kρ
∗

0 (α,T ) is convex and compact, and xmax + θ∗i d̄i ∈

∂Kρ
∗

0 (α,T ), we have Kρ
∗

0 (α,T ,D) ⊆ Kρ
∗

0 (α,T ) [BV04, Sec. 2.1.4]. On the other

hand, if (5.18) is infeasible, then Kρ
∗

0 (α,T ) is empty, which implies Kρ
∗

0 (α,T ,D) is

empty.

Algorithm 6 Compute polytopic Kρ
∗

0 (α,T ,D) ⊆ Lπ∗0 (α,T )

Input: Probability threshold α, set of direction vectors D
Output: Kρ

∗

0 (α,T ,D) ⊆ Kρ
∗

0 (α,T ) ⊆ Lπ∗0 (α,T )
1: Solve (5.18) to compute xmax

2: if W ∗
0 (xmax) ≥ α then

3: for d̄i ∈ D do
4: Solve (5.19) to compute a relative boundary point xmax + θ∗i d̄i and its

optimal open-loop controller ρ∗(xmax + θ∗i d̄i)
5: end for
6: Kρ

∗

0 (α,T ,D)← convi∈N[1,|D|](xmax + θ∗i d̄i)
7: else
8: Kρ

∗

0 (α,T ,D)← ∅
9: end if

Algorithm 6 solves Problem 9.

5.7.1 Implementational Details and Computational Effort

Algorithm 6 is an anytime algorithm, as interrupting the convex hull of the solutions

of (5.19) for an arbitrary subset of direction vectors in D also provides a valid un-
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derapproximation. Additionally, Algorithm 6 is parallelizable since the computations

along each of the direction d̄i are independent.

The choice of D influences the quality (in terms of volume) of underapproximation

provided by Algorithm 6. One strategy is to choose the vectors in D that are spaced

far apart initially, and then increase |D| by sampling appropriate directions to tighten

the underapproximation as appropriate, at the cost of increased computational time.

The computation of xmax also determines the quality of the polytopic underap-

proximation. Motivated by the Chebyshev centering of a polytope [BV04, Sec. 8.5.1],

we consider an alternative to (5.18),

maximize
x,U,R

R

subject to

 U ∈ UN , β ∈ [0, 1], W0(x, U) ≥ α

R ≥ 0, a>i x+R‖ai‖2 ≤ bi,∀i ∈ N[1,M ]

. (5.20)

Here, instead of finding the initial state with maximum W0(x, U), we wish to compute

the “deepest” point in the set T0 such that W0(x, U) ≥ α. Thus, the requirement

that x ∈ T0 is tightened to be T0 = ∩Mi=1{z : a>i z ≤ bi}. We also have a feasibility

problem in x and U . Due to the convexity of the underapproximative polytope, one

can combine both of these polytopes (via convex hull of their vertices) to obtain a

larger polytope. Larger R suggests that considering a collection of direction vectors

D, sampled from a unit circle is not a bad choice.

Memory Requirements

The memory requirements of Algorithm 6 grow linearly with |D| and are independent

of the system dimension. In contrast, dynamic programming requires an exponential

number of grid points in memory, leading to the curse of dimensionality [Aba+07].

Algorithm 6 is grid-free and recursion-free, and it scales favorably with the system

dimension, as compared to dynamic programming. Thus, Algorithm 6 can verify and
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synthesize controllers for high-dimensional systems that were previously not verifiable.

Computation Time

Denoting the computation times to solve (5.18) and (5.19) as txmax and tline respec-

tively, the computation time for Algorithm 6 is O(txmax + tline|D|). Since (5.18) and

(5.19) are convex problems, globally optimal solutions are assured with (potentially)

low txmax and tline. However, the joint chance constraint W0(x, U) ≥ α is not solver-

friendly, since we do not have a closed-form expression for W0(x, U), or an exact

reformulation into a conic constraint.

In Algorithm 6, to solve (5.18) and (5.19), we need an efficient way to enforce the

constraint W0(x, U) ≥ α for any x ∈ X , U ∈ UN and α ∈ [0, 1]. Under Assumption 8,

W0(x0, U) is the integration of a Gaussian PDF over a polytope [VO17]. We consider

three approaches to enforce the constraint W0(x0, U) ≥ α, motivated by the discussion

in Section 5.6.

1. Convex chance constraints: An underapproximative reformulation via Boole’s

inequality and Gaussian random vector properties [LOE13]. A sufficient con-

dition for convexity of this reformulation requires α ∈ [0.5, 1] (see [LOE13;

OW08]).

2. Sampling: Mixed integer-linear reformulation via scenarios drawn from Px0,U
X

that optionally satisfy the reach objective (stay within the target tube) [LOE13].

3. Fourier transform: An approximative reformulation via a numerical “noisy”

Monte Carlo simulations-based evaluation of W0(x0, U). We rely on gradient-

free optimization techniques [KLT03] to optimize the resulting “noisy” opti-

mization problem [VO17; VO18b]. For a Gaussian X (2.27), we use Genz’s al-

gorithm to evaluate W0(x, U) via quasi-Monte Carlo simulations and Cholesky

decomposition [Gen14; Gen92].
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Enforce W0(x, U) ≥ α Approximation Implementation

Convex chance
constraints
[LOE13; OW08]

Tighten the constraint
W0(x, U) ≥ α via Boole’s
inequality [LOE13]

Nonlinear solver [LOE13]
or iterative linear pro-
grams [OW08];
Requires α ≥ 0.5
for convexity of
{U : W0(x0, U) ≥ α}

Sampling-based
[LOE13; BOW11]

Approximation quality
improves with increase in
the number of samples
Ns [LOE13]

Mixed-integer linear pro-
gram [LOE13; BOW11];
Exponential compute
cost w.r.t. Ns [BOW11]

Fourier transform
(Evaluate W0(x, U)
numerically)
[VO17; VO18b]

Approximation to a de-
sired tolerance [VO17;
VO18b]

Nonlinear solver that
can handle noisy objec-
tives [KLT03];
Use Genz’s algorithm
[Gen92] to evaluate
W0(x, U)

Table 5.1: Enforcing W0(x0, U) ≥ α under Assumption 8.

Table 5.1 compares the implementation of the constraint W0(x, U) ≥ α using

these approaches. Figure 5.3 summarizes the conservativeness introduced at different

stages of the open-loop controller-based underapproximation when chance constrained

reformulation is used.

Stochastic reachability
problem (4.2) Lπ∗0 (α,T )

Open-loop underapproxi-
mation (4.14) Kρ

∗

0 (α,T )

Polytopic underapproxima-
tion (Alg. 6) Kρ

∗

0 (α,T ,D)

Convex chance con-
straints for (5.18) and
(5.19) [OW08; LOE13]

Relax state-
feedback constraint

Theorem 10

Finite subset of extreme points
[BV04, Ch. 2][Web94, Ch. 2]

Risk allocation
(Boole’s inequality)

α ∈ [0.5, 1]

Figure 5.3: Construction of polytopic underapproximation of the stochastic reach set,
Kρ
∗

0 (α,T ,D) ⊆ Lπ∗0 (α,T ), via chance constraints and open-loop controllers.
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5.8 Numerical Experiments

All computations were performed using MATLAB on an Intel Xeon CPU with 3.4GHz

clock rate and 32 GB RAM. We used SReachTools (see Chapter 6) for the stochastic

reachability problems, MPT3 [Her+13] for computational geometry, and CVX [GB14]

for parsing convex problems. We used Gurobi [Gur15] as the backend solver for

the chance constrained approach, and MATLAB’s patternsearch as the nonlinear

solver for the Fourier transform approach. We will demonstrate various features of

SReachTools using these experiments (see Table 6.1, pg. 145).

5.8.1 Demonstration of Interpolation Technique and Scala-
bility on a Chain of Integrators

Consider a chain of integrators,

xk+1 =



1 Ns
1
2
N2
s . . . 1

(n−1)!
Nn−1
s

0 1 Ns

...
. . .

...

0 0 0 . . . Ns

0 0 0 . . . 1


xk

+

[
1
n!
Nn
s . . . 1

2
Ns Ns

]>
uk +wk (5.21)

with state xk ∈ Rn, input uk ∈ U = [−1, 1], a Gaussian disturbance wk ∼

N (02, 0.01I2), sampling time Ns = 0.1, and time horizon N = 5. Here, In refers

to the n-dimensional identity matrix and 0n is the n-dimensional zero vector.

2D system

Consider the terminal time problem with Ti = [−1, 1]2 i ∈ N[0,N−1] and TN =

[−0.5, 0.5]2. We compare Kρ
∗

0 (α,T ,D) obtained using Algorithm 6 with |D| = 32
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n = 2 (|D| = 32) n = 40 (|D| = 6)
α 0.6 0.85 0.9 0.6 0.85 0.9

Algorithm 6 19.36 19.28 18.94 6138.7 6101.2 6101.2

Interpolate Kρ
∗

0 (α,T ) – 0.037 – – 0.06 –
Dynamic programming 47.37

Not possible
Interpolate Lπ∗0 (α,T ) – 0.04 –

Table 5.2: Computation time (in seconds) for verification of a chain of integrators.

and the set Lπ∗0 (α,T ) obtained via grid-based dynamic programming [Aba+07]. We

discretized the state space and the input space in steps of 0.05.

Figure 5.4a shows that, in general, Algorithm 6 provides a good underapproxi-

mation of the true stochastic viable set for a double integrator. The advantage of

using state-feedback π∗ over an open loop controller ρ∗ is seen in the underapprox-

imation “gaps” between the polytopes (Theorem 10). Figure 5.4b shows that the

(interpolated) polytopic underapproximation obtained at α = 0.85 using the poly-

topic representations of Lπ∗0 (α,T ) and Kρ
∗

0 (α,T ) for α ∈ {0.6, 0.9} (Theorems 8

and 9d) approximates the true sets well.

Table 5.2 provides the computation times. As expected, the grid-free nature of

Algorithm 6 coupled with the convexity and compactness properties established in

Section 4.6 and the underapproximative guarantee (Theorem 10) provides significant

speed-up for underapproximative verification and controller synthesis. The interpola-

tion approach (Theorems 8 and 9d) took significantly lower computation time while

producing a good underapproximation. We can now perform real-time verification

by computing a few stochastic reach sets offline and then performing appropriate

interpolations.

For Figure 5.5, we chose Ti = [−1, 1]2 (viability problem), U = [−0.1, 0.1], wk ∼

N (02×1, diag([10−6 10−3]), sampling time Ns = 0.25, and time horizon N = 5. We

chose 24 direction vectors, sampled from a unit circle such that they subtend the

same angle at the center. For SReachDynProg, we discretized the state and input

133



CHAPTER 5. STOCHASTIC REACHABILITY OF A TARGET TUBE: COMPUTATION

a) b)

Figure 5.4: Stochastic reachability for a double integrator: a) stochastic viable sets
Lπ∗0 (α,T ) (contours) and their polytopic underapproximations Kρ

∗

0 (α,T ,D) for α ∈
{0.6, 0.9}; b) the true sets (Lπ∗0 (α,T ) and Kρ

∗

0 (α,T ,D)) at α = 0.85 and their
underapproximative interpolations (Thms. 8 and 9d) using their counterparts for
α ∈ {0.6, 0.9}.

Figure 5.5: Comparison of Lπ∗0 (0.8) for a 2-dimensional double integrator computed
via dynamic programming, and multiple SReachSet approximations.
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Figure 5.6: Scalability of SReachSet methods demonstrated on a chain of integrators,
as state dimension increases.

spaces using a grid step sizes of 0.02 and 0.01 respectively. As expected, Algorithm 6

provides an underapproximation to the stochastic reach set Lπ∗0 (α,T ).

For Figure 5.6, at each iteration of the state dimension n ∈ N[2,20] we chose Ti =

[−1, 1]n (viability problem), U = [−0.1, 0.1], wk ∼

N (0n×1, diag([10−6 . . . 10−6 10−3]), sampling time Ns = 0.25, and time horizon

N = 5. We chose 24 direction vectors, sampled from a unit circle such that they sub-

tend the same angle at the center. Lagrangian methods are fast in low dimensions,

but practically limited to m ≤ 7 because of the vertex-facet enumeration problem.

Open-loop methods, genzps-open and chance-open, scale well with dimension, but

have a higher initial cost.

40D System

To demonstrate scalability, consider the terminal time problem with n = 40 and

Ti = [−10, 10]40 i ∈ N[0,N−1] and TN = [−8, 8]40. Due to the curse of dimensionality, we

can not use dynamic programming [Aba+07]. We compute Kρ
∗

0 (α,T ,D) for n = 40

for α ∈ {0.6, 0.85, 0.9} and also demonstrate the underapproximative interpolation

for this high-dimensional system. Figure 5.7a shows a 2D slice of Kρ
∗

0 (α,T ,D) that

verifies x0 of the form [x1 x2 x3 0 . . . 0]> ∈ R40. The difference in volume between
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a) b)

Figure 5.7: Stochastic reach-avoid analysis for a chain of integrators (n = 40): a)
the polytopic underapproximations of the stochastic reach-avoid sets Kρ

∗

0 (α,T ,D)

for α ∈ {0.6, 0.9}; b) the Kρ
∗

0 (α,T ,D) at α = 0.85 and its tight underapproximative

interpolation (Thm. 9d) using Kρ
∗

0 (α,T ,D) for α ∈ {0.6, 0.9}. For illustration, we

consider initial states x0 = [x1 x2 0 . . . 0]>.

the underapproximative interpolation (Theorem 9d) and Kρ
∗

0 (α,T ,D) at α = 0.85

is negligible (1.124 via MPT3 [Her+13]), as seen in Figure 5.7b. To the best of

our knowledge, this is the largest stochastic LTI system verified to date through a

stochastic reachability formulation.

5.8.2 Application: Spacecraft Rendezvous Problem

We consider two spacecraft in the same elliptical orbit. One spacecraft, referred to

as the deputy, must approach and dock with another spacecraft, referred to as the

chief, while remaining in a line-of-sight cone, in which accurate sensing of the other

vehicle is possible. The relative dynamics are described by the Clohessy-Wiltshire-

Hill (CWH) equations [Wie89] with additive stochastic noise to account for model

uncertainties,

ẍ− 3ωx− 2ωẏ = m−1
d Fx, ÿ + 2ωẋ = m−1

d Fy. (5.22)
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The chief is located at the origin, the position of the deputy is x, y ∈ R, ω =
√
µ/R3

0

is the orbital frequency, µ is the gravitational constant, and R0 is the orbital radius

of the spacecraft. See [LOE13; GVO17] for further details.

We define the state as z = [x, y, ẋ, ẏ] ∈ R4 and input as u = [Fx, Fy] ∈ U ⊆ R2.

We discretize the dynamics (5.22) in time to obtain the discrete-time LTI system,

zk+1 = Azk +Buk + wk (5.23)

with wk ∈ R4 a Gaussian i.i.d. disturbance, with E[wk] = 0, Σ = E[wkw
>
k ] =

10−4 × diag(1, 1, 5 × 10−4, 5 × 10−4). Given uM ∈ R, uM > 0, we define the input

space as U = [−uM , uM ]2 and the target tube for a time horizon of N = 5,

T5 =
{
z ∈ R4 : |z1| ≤ 0.1,−0.1 ≤ z2 ≤ 0,

|z3| ≤ 0.01, |z4| ≤ 0.01} , and

Ti =
{
z ∈ R4 : |z1| ≤ z2,max(|z3|, |z4|) ≤ 5uM

}
, i ∈ N[0,4].

We consider two verification (terminal time) problems as done in [VO18b; GVO17;

LOE13]:

P1) initial velocity ẋ = ẏ = 0 km/s and input bound uM = 0.1,

P2) initial velocity ẋ = ẏ = 0.01 km/s and input bound uM = 0.01.

We are interested in solving these stochastic reach-avoid problems, by computing

Kρ
∗

0 (α,T ), at α = 0.8.

We solve the terminal time problem conservatively using Algorithm 6 (via Fourier

transform and chance constraint approaches) and Lagrangian methods [GVO17].

Both of these problems are intractable via dynamic programming [SL10]. Exploiting

the convexity and compactness results from Section 4.6, Algorithm 6 performs sig-

nificantly faster than the grid-based implementation of chance constraints approach
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Underapproximative
method

Chance constraint
[OW08; LOE13]

Fourier transform
[VO17; VO18b]

Lagrangian
[GVO17]

Figure 5.8 (ẋ = ẏ =
0, uM = 0.1)

16.87 (|D| = 32) 940.45 (|D| = 8) 14.5

Figure 5.9 (ẋ = ẏ =
uM = 0.01)

18.24 (|D| = 32) 2029.51 (|D| = 8) –

Table 5.3: Computation times (in seconds) for verification of the satellite rendezvous
problem. Dynamic programming [Aba+07] is not possible for 4D systems.

Figure 5.8: Underapproximative verification and open-loop controller synthesis for
spacecraft rendezvous problem for zero initial velocity. Monte Carlo simulations (105

scenarios with five randomly chosen trajectories displayed) show a simulated reach
probability of 0.82; the chance constraint estimate was 0.8.

proposed in [LOE13]. Figures 5.8 and 5.9 show a slice of the stochastic reach-avoid

underapproximations for both the verification problems. Computational times are

summarized in Table 5.3.

The Lagrangian method [GVO17] utilizes computational geometry to underap-

proximate the stochastic reach-avoid set and searches in the space of closed-loop

controllers. However, it relies on the vertex-facet enumeration problem, which fails

Figure 5.9: Underapproximative verification and open-loop controller synthesis for
spacecraft rendezvous problem for non-zero initial velocity. Monte Carlo simulations
(105 scenarios with five randomly chosen trajectories displayed) show a simulated
reach probability of 0.81; the chance constraint estimate was 0.8.
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for large time horizons, small target sets, or small safe sets. While this approach

fails to compute a set for P2, it is slightly faster than Algorithm 6 (see Table 5.3) for

P1. The associated set subsumes the polytopes computed using Algorithm 6 since

Lagrangian method searches for a closed-loop controller in a conservative manner.

Within Algorithm 6, the implementation using chance constraints (via risk al-

location [LOE13; OW08]) outperforms the implementation via Fourier transforms

(Genz’s algorithm and MATLAB’s patternsearch [VO17; Gen92; KLT03]) in terms

of computational time. The computational efficiency of chance constraint approach

results from its use of a series of linear programs [OW08]. The Fourier transform

approach evaluates W0(x, U) using Genz’s algorithm (quasi-Monte Carlo simulation)

and solves the problems (5.18) and (5.19) using MATLAB’s patternsearch and bi-

section [VO18b]. The Fourier transform approach does not have additional conserva-

tiveness (due to Boole’s inequality), as compared to chance constraint approach (see

Figure 5.9). However, due to the noisy nature of the optimization problem, the line

search in the Fourier transform approach may terminate prematurely (see Figure 5.8).

5.8.3 Demonstration of Stochastic Reachability of a Target
Tube for a LTV System: Dubin’s Vehicle with a Fixed
Turn Rate

We consider the problem of driving a Dubin’s vehicle under a known turning rate

sequence while staying within a target tube. The linear time-varying dynamics with

additive disturbance describing the position of the car is given by

xk+1 = xk +

 Ts cos(θ0 + Ts
∑k−1

i=0 ωi)

Ts sin(θ0 + Ts
∑k−1

i=0 ωi)


︸ ︷︷ ︸

Bk

uk + ηk (5.24)

with xk ∈ R2 as the two-dimensional position of the car, uk ∈ [0, umax] as the heading

velocity, sampling time Ts, known initial heading θ0, time horizon N , known sequence
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of turning rates {ωk}N−1
k=0 , and a Gaussian random process ηk ∼ N (µη,Ση). The dy-

namics (5.24) are obtained using the observation that when the turning rate sequence

and the initial heading are known, one can apriori construct the resulting sequence

of heading angles. For a fixed heading velocity, uk = v, ∀k ∈ N[0,N ], for some v ∈ R,

let {ck}N−1
k=0 be the resulting nominal trajectory of (5.24).

We choose the parameters of the problem as N = 50, Ts = 0.1, ωk = 0.5, ∀k ∈

N[0,N−1], θ0 = π
4
, v = 10, umax = 2v

3
, µη = 02, and Ση = 10−3I2. We are interested in

the 0.8-level stochastic reach set of the target tube Tk = Box
(
ck, 0.5 exp

(
−k
Nc

))
, ∀k ∈

N[0,N ] where Nc = 100 is the decay time constant.

SReachTools (via SReachSet with option chance-open, or equivalently Algo-

rithm 6 using convex convex chance constraints) solves this problem in 137.43 seconds

for |D| = 16. In contrast to Section 5.8.2, the conservativeness introduced by Boole’s

inequality is more severe — the simulated maximal reach probability is 0.15 above

the chance constrained estimate. Due to the size of the state space involved, dynamic

programming is not feasible. One might be able to use time and state-dependent

gridding to compute an approximate solution.

Figure 5.11 shows the mean trajectory for each controller synthesis method avail-

able with SReachPoint. The computation times, in seconds, were 27.28 for

particle-open, 527.85 for genzps-open, 279.11 for chance-affine, and 1.80 for

chance-open.

5.8.4 Application: Automated Anesthesia Delivery System

We consider the problem of providing probabilistic guarantees of safety for the auto-

mated anaesthesia delivery problem [Aba+18]. Uncertainty in the system dynamics

is captured via additive Gaussian noise.

The concentration of a drug administered to a patient is often represented by a

multi-compartment model [Hil04]. The concentration of Propofol in different com-
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Figure 5.10: Verification and open-loop controller synthesis for a Dubin’s vehicle prob-
lem with a target tube converging to a nominal trajectory. Monte Carlo simulations
(105 scenarios with five randomly chosen trajectories displayed) show a simulated
reach probability of 0.95; the chance constraint estimate was 0.8.

Figure 5.11: Mean trajectories of the Dubins’ vehicle corresponding to the optimal
controllers synthesized via SReachPoint. All trajectories report rπ

∗
x0

(T ) ≥ 0.9.

Figure 5.12: Stochastic verification of the automated anesthesia delivery system for
(x0)3 fixed at 5 units. The optimal controller from a vertex was validated using Monte-
Carlo simulations (blue ellipses contain 100 randomly choosen trajectories from 105

Monte Carlo simulations).
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partments of the body are modelled using the three-compartment pharmacokinetic

system [GDM14]:

ẋ(t) =


−(k10 + k12 + k13) k12 k13

k21 −k21 0

k31 0 −k31

x(t) +


1
V1

0

0

u(t) (5.25)

The state x(t) ∈ X = R3 represents the concentration in each of the three compart-

ments. The input u(t) ∈ U ⊂ R represents the rate of administration of Propofol,

and V1, kij ∈ R (i, j ∈ {1, 2, 3}) are patient dependent parameters. Table 5.4 lists the

parameter values determined for a 11-year old child weighing 35 kilograms from the

Paedfusor dataset [AK05].

k10 k12 k13 k21 k31 V1

0.4436 0.1140 0.0419 0.0550 0.0033 16.044

Table 5.4: Model Parameters from the Paedfusor dataset.

We discretize the continuous-time model (5.25) using a zero-order hold with a

time-step of Ts = 20s. The discrete-time approximation of (5.25) (using parameter

values given in Table 5.4) is

xk+1 =


0.8192 0.03412 0.01265

0.01646 0.9822 0.0001

0.0009 0.00002 0.9989

xk + ωk +


0.01883

0.0002

0.00001

uk (5.26)

= Axk + ωk +Buk (5.27)

The automated input is uk ∈ U and the zero-mean Gaussian random vector ωk ∼

N (0, C) with known covariance matrix C ∈ R3×3 accounts for the variation in the

system model for different patients. We choose U = [0, 7] mg/min and C = 10−3I3.
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The state xk is a random vector, due to the stochastic noise ωk.

Consider a safe set K = {z ∈ X : 1 ≤ z1 ≤ 6, 0 ≤ z2 ≤ 10, 0 ≤ z3 ≤ 10} ⊂ X , and

a target set T = {z ∈ X : 4 ≤ z1 ≤ 6, 8 ≤ z2 ≤ 10, 8 ≤ z3 ≤ 10} ⊂ X . We wish to

verify (5.26) with respect to the safe set K for a time horizon of 5 time steps.

Figure 5.12 shows the stochastic verification of the automated anesthesia delivery

system. The verification was done with a safety probability threshold of 0.99 using

SReachTools (via SReachSet with option chance-open, or equivalently Algorithm 6

using convex convex chance constraints). The computation took 16.57 seconds to

analyze 64 directions, sampled from a unit circle such that they subtend the same

angle at the center.

5.9 Summary

This chapter discusses four novel approaches for controller synthesis for the stochastic

reachability of a target tube. We build our grid-free and scalable approaches using

the set-theoretical results presented in Chapter 4. Specifically, we demonstrate un-

derapproximative and approximative point-based stochastic reachability evaluations

along with open-loop or affine feedback controller synthesis using convex optimization,

stochastic programming, and Fourier transforms. We also combine these techniques

with a ray-shooting algorithm to underapproximate the sets in a scalable, grid-free,

and anytime algorithm. This approach enables, for the first time, the verification of

systems as high as 40-dimensions.
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Chapter 6

SReachTools: A MATLAB Toolbox
for Stochastic Reachability

6.1 Introduction

This chapter briefly discusses the features of SReachTools, an open-source MATLAB

toolbox that implements all the algorithms discussed in Chapter 5. The primary goal

of SReachTools is to allow an end-user to solve stochastic reachability problems

without requiring exhaustive knowledge of the underlying algorithms or their imple-

mentation.

The toolbox is available online at https://unm-hscl.github.io/SReachTools/.

The project website also has a comprehensive documentation of the various functions

in SReachTools as well as demonstration examples.

6.2 Features of SReachTools

Table 6.1 shows the primary solving functions in SReachTools and the different so-

lution methods available for each function along with their utility.
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Function method str Utility

SReachDyn –
Dynamic programming-based approxima-
tion of rπ

∗
x0

(T ) and Lπ∗0 (α,T )

SReachPoint

chance-open
Underapproximation of rπ

∗
x0

(T );
Implements (5.15)

genzps-open

Approximation of rπ
∗
x0

(T ) within εgenz;
Implements (5.14) using Genz’s algo-
rithm [Gen14]

particle-open
Approximation of rπ

∗
x0

(T ); Implements
(5.17) [LOE13]

chance-affine Underapproximation of rM
∗
,D
∗

x0
(T ; ∆U);

Implements (5.8)

SReachSet

chance-open

Implements Alg. 6 using convex
chance constraints to underapproximate
Lπ∗0 (α,T )

genzps-open

Implements Alg. 6 using Genz’s al-
gorithm [Gen14] to underapproximate
Lπ∗0 (α,T )

lag-open
Lagrangian approach [GVO17]

lag-under

SReachFwd

state-stoch Stochasticity of xk
concat-stoch Stochasticity of X
state-prob Px0

xk
{xk ∈ T }

concat-prob Px0
X{∀i ∈ N[1,k], xi ∈ Ti}

Table 6.1: Current features of SReachTools. Here, rπ
∗
x0

(T ) corresponds to the max-
imum reach probability for staying within the target tube T (4.2), and Lπ∗0 (α,T )
is the set of initial states from which the maximal reach probability is above a user-
specified threshold.
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6.2.1 Auxillary Functions

SReachTools comes with a built-in initialization script srtinit and a broad set of

unit-testing functions to ensure proper performance of the toolbox. The initialization

script is designed to eliminate potential function-name overloading by only adding

the SReachTools source functions to the MATLAB path when they are in use.

For easy handling of linear, discrete-time systems, we have developed LtiSystem

and LtvSystem classes to define linear systems (2.19). Both of these classes also

permit specification of the additive disturbance as wk = Fkvk as well, for some ran-

dom vector vk. We use the Multi-Parameteric Toolbox (MPT3) [Her+13] to define

polytopic input spaces and polytopic disturbance spaces, if required. SReachTools

has several demonstration systems, such as a chain of integrators, Dubins car, and

Clohessy-Wiltshire-Hill spacecraft near-orbit relative dynamics.

SReachTools also has the Tube class to define polytopic target tubes, and

RandomVector class to define random vector disturbances or initial states. Tube

is implemented using MPT3 [Her+13] to define a collection of time-stamped polytopic

safe sets. One can also easily specify a reach-avoid [SL10] or viability [Aba+08] spec-

ification using Tube. Currently, RandomVector supports only Gaussian disturbances,

while development is underway to include non-Gaussian disturbances.

Using objects of Tube, RandomVector, and LtiSystem or LtvSystem classes, one

can pose the problems of stochastic reachability discussed in Section 4.3. We presume

for the remainder that sys refers to an instance of the LtiSystem or LtvSystem classes

to describe (2.19) respectively, and tube refers to an instance of the Tube class to

describe T .

146



CHAPTER 6. SREACHTOOLS: A MATLAB TOOLBOX FOR STOCHASTIC REACHABILITY

6.2.2 Stochastic Reachability of a Target Tube

Dynamic Programming

We can use SReachTools to implement a grid-based implementation of (4.3) using

SReachDynProg.

% Dynamic programming solution with SReachTools

SReachDynProg(prob str, sys, x inc, u inc, tube)

Here, prob str refers to the type of reachability problem, x inc and u inc are grid

step sizes for the state space X and input space U respectively. Currently in the

SReachTools toolbox, prob str must always be ‘term’, as version 1.0.0 is only de-

signed for the problem of stochastic reachability of a target tube, i.e. the terminal-

time hitting problem. Future releases will address other reachability problems, e.g.

the first-time hitting problem [SL10].

Point-Based Stochastic Reachability Computation

SReachTools implements all the algorithms proposed in Chapter 5. Using

SReachPoint, it can compute an (open-loop or affine) optimal controller from a given

initial state that maximizes the probability of the state of the stochastic linear system

(2.19) to stay within a pre-specified target tube T . This function implements the

discussion in Sections 5.5, 5.6.1, 5.6.2, and 5.6.3. We use CVX [GB14] to implement

all of the convex and mixed-integer linear programs.

% Generate SReachTools options

options = SReachPointOptions(prob str, method str)

% Point-based stochastic target tube reachability

SReachPoint(prob str, method str, sys, init state, tube, options)

Here, method str refers to the optimization approach (‘chance-open’,

‘particle-open’, ‘genzps-open’, or ‘chance-affine’), init state is the initial

state x0 ∈ X at which an (under-)approximation of rπ
∗
x0

(T ) must be evaluated, and
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options enables specification of accuracy and method-specific arguments (i.e., ∆U).

Stochastic Reach Set Computation

SReachTools implements the polytopic approximation of the stochastic reach set

using SReachSet. It implements Algorithm 6 in Chapter 5 using the open-loop

controller-based reach probability using Genz’s algorithm or chance constraints (see

Table 5.1). In addition, SReachSet also implements the Lagrangian technique to

compute (over- and under-) approximations to the stochastic reach set Lπ∗0 (α,T ).

The Lagrangian approach uses a backward recursion that employs Minkowski sum,

difference, intersection, and affine transformations [GVO17].

% Generate SReachTools options

options = SReachSetOptions(prob str, method str)

% Compute stochastic reach sets with SReachTools

SReachSet(prob str, method str, sys, thresh, tube, options)

Here, method str can be ‘lag-under’ or ‘lag-over’ for the Lagrangian under-

and over-approximation, respectively; ‘genz-open’ for an under-approximation us-

ing Genz algorithm; and ‘chance-open’ for an under-approximation using chance-

constrained optimization. The input ‘thresh’ is the probabilistic bound, α, and

options is used to specify additional solver options like direction vectors to use for

the point-based stochastic reach set computations.

6.2.3 Forward Stochastic Reachability

SReachTools characterizes the mean and covariance of xk and x[0,k] using the fact

that affine transformations of Gaussian random vectors are Gaussian [Gub06, Sec. 9.2]

(i.e., the prediction step of a Kalman filter). We employ Genz’s algorithm [Gen92;

Gen14] for numerical evaluation of the high-dimensional quadrature of multivariate

Gaussians over polytopes, up to a user-specified accuracy of εgenz.
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% Forward stochastic reachability via SReachTools
SReachFwd(prob str, sys, init state, k, [set/tube])

Table 6.1 describes various values prob str can take. The input init state takes in

the initial state, which can be a deterministic vector or a random vector (an object

of RandomVector). SReachFwd needs a set (target set T ) or tube (target tube T ),

only if prob str is ‘state-prob’ or ‘concat-prob’, respectively.
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Conclusion

This dissertation proposes novel theory and scalable algorithms for tractable solution

to the stochastic reachability problems. Our motivation stems from the need for safety

and performance guarantees in control systems. These guarantees for complex con-

trol systems with stochastic uncertainty allow for insightful analysis, especially when

failure to meet a given objective, while possible, is unlikely. We demonstrate the

utility of this work in a host of applications: stochastic target capture (Section 3.6),

stochastic motion planning (Section 3.7), verification of spacecraft rendezvous prob-

lem (Section 5.8.2), and automated anesthesia delivery system (Section 5.8.4).

7.1 Summary of Contributions

We first analyzed the problem of forward stochastic reachability, the problem of pre-

dicting the stochasticity of the state at a future time instant. Using Fourier transforms

and computational geometry, we discussed a grid-free, recursion-free, and scalable

approach to estimate the associated probability density. We also characterized the

sufficient conditions under which this density is log-concave and the reach set is con-

vex. These convexity results enabled a convex optimization-based formulation of the

stochastic target capture problem, enabling computationally efficient search for glob-
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ally optimal solutions. We experimentally validated this approach on a quadrotor

testbed.

For the problem of obstacle prediction in stochastic motion planning problems,

we used forward stochastic reachability analysis to define probabilistic occupancy

function and α-probabilistic occupied sets. We characterized multiple grid-free and

scalable algorithms to compute polytopic and ellipsoidal overapproximations of these

sets. These algorithms relied on the proposed sufficient conditions for the convexity

and compactness of α-probabilistic occupied set. These sets can be used with any

standard motion planning algorithms capable of avoiding dynamic obstacles to gener-

ate probabilistically safe trajectories. We demonstrated the utility of these algorithms

by using successive convexification techniques to solve the stochastic motion planning

problem for linear robot dynamics and multiple rigid-body obstacles with stochastic

linear dynamics.

Next, we analyzed the problem of backward stochastic reachability by formulating

the problem of stochastic reachabilty of a target tube. This problem subsumed the

existing work on terminal hitting-time stochastic reach-avoid problems and stochastic

viability problems. Of special interest is the stochastic reach set, the set of all initial

states that can be driven to a probabilistic safety above a threshold under bounded

control authority and system dynamics. We characterized sufficient conditions under

which this set exists, and is closed, bounded, convex, and compact. The convexity and

compactness results enabled efficient computation of underapproximative polytopic

underaproximations of these sets. We also synthesized open-loop and affine feedback

controllers to maximize the safety probability, and discussed an underapproximative

interpolation technique for stochastic reach sets. We demonstrated the utility of

this approach on various applications including verification of spacecraft rendezvous

problem, automated anesthesia delivery, and stochastic motion planning.

Finally, we presented an open-source MATLAB toolbox, SReachTools, that im-
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plements all the algorithms presented in this dissertation in an easily-accessible code

base.

7.2 Future Directions

This dissertation opens several new doors with its theoretical analysis and scalable

algorithms. We describe few of the exciting directions that may be explored next.

• Stochastic reachability for analysis of human-in-the-loop systems : Several

modern-day control systems involve a human in the control loop. The scalable

techniques for verification proposed in this dissertation can enable accounting

for the human as a stochastic agent affecting the system, as opposed to an

adversarial agent, as is typically done in literature [GDCB17].

• Extensions of the computational approaches to systems beyond linear systems

(2.19): We required linearity of the system to guarantee convexity (see Ta-

ble 4.1). Therefore, a generic nonlinear equality constraint will render the opti-

mization problem non-convex. On the other hand, semidefinite programs have

been used to analyze stochastic nonlinear systems [Hor14].

• Theory and algorithms for the first hitting-time stochastic reach-avoid problems :

Informally, the first hitting-time stochastic reach-avoid problems optimizes for

an admissible controller that maximizes the probability of reaching a target set

within the time horizon, while staying in a safety tube [SL10]. In contrast,

the problem of stochastic reachability of a target tube requires the target set

be hit precisely at the time horizon. First hitting-time stochastic reach-avoid

problems are relevant in problems of stochastic motion planning, where a better

maneuver might be missed if a target tube formulation is used. Chapters 4 and 5

provided sufficient conditions for set properties like convexity and compactness
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of the stochastic reach set for the terminal hitting-time problem. We should

explore if these properties and algorithms can be extended to the first hitting-

time problem. Currently, approximate dynamic programming approaches are

the only available approach for this problem [Kar+17], and they lack guarantees

in the direction of approximation.
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