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Abstract— This paper considers the problem of stochastic
optimal control of a Gaussian-perturbed linear system subject
to soft polytopic state constraints, hard polytopic input con-
straints, and a convex cost function. We propose two conserva-
tive approaches using risk allocation that can be implemented
via existing solvers, and characterize the approximations. Un-
like existing approaches, we do not decouple the risk allocation
from the optimal controller synthesis. We first show that risk
allocation in conjunction with optimal controller synthesis intro-
duces reverse convex constraints into the optimization problem.
Next, we use piecewise-affine approximations of the nonlinear
terms in the optimization problem to propose a mixed-integer
convex program. Our piecewise-affine approximation produces
a solver-friendly convex program when the safety probability
threshold is larger than 0.5. Using two stochastic motion
planning problems, we demonstrate that the proposed approach
outperforms existing approaches like iterative risk allocation
and particle control approaches in computation time, without
compromising on the solution quality.

I. INTRODUCTION

Optimal control under uncertainty is an important prob-
lem, with applications ranging from path planning in robotics
and space applications, to control of chemical plants [1]–[4].
A typical optimal control problem requires minimization of
an objective, while ensuring that the system stays within a
prescribed safe set and the control effort respects the hard
actuator bounds. However, in real world applications, we
must achieve optimal control while accounting for uncer-
tainties like modeling errors, poor characterization of the
environment, and limited sensing capabilities. While robust
control approaches provide absolute guarantees of safety un-
der uncertainty, this can often lead to conservative solutions,
or even infeasibility, depending on the uncertainty. Given a
stochastic characterization of the uncertainty, we can replace
hard state constraints with soft constraints or chance con-
straints. Chance constraints permit the violation of the safety
constraints with a probability below a specified threshold.
By varying this threshold, we trade-off the conservativeness
of the optimal trajectory, due to the safety constraints, with
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the cost associated with executing the trajectory. Reviews of
robust and stochastic optimal control techniques in a model
predictive framework are provided in [5]–[7].

In this paper, we will focus on the problem of stochastic
optimal control of a Gaussian-perturbed linear system, sub-
ject to soft polytopic state constraints (i.e., the probability
of lying in a polytopic safe set must be above a threshold),
hard polytopic input constraints (i.e., design controllers must
respect linear actuator bounds), and a convex cost function
(i.e., minimize actuation efforts or distance to a desired
trajectory). The probabilistic safety constraints typically lead
to a joint chance constraint that requires high dimensional
integration and is hard to compute and enforce.

Among the several approaches that exist to solve the
constrained stochastic optimal control problem [6], [7], we
discuss the sampling-based [1], [8] and risk allocation-
based approaches [9]–[11], since they can the handle the
problem of interest without introducing severe conservatism.
Sampling-based approaches approximate the uncertainty dis-
tribution using a finite number of particles, and formulate a
mixed-integer optimization problem [1]. The main advantage
of this approach is that it is distribution-independent, and has
well-characterized lower bounds on the number of particles
needed to achieve high quality solutions [8]. However, these
lower bounds typically prescribe a large number of parti-
cles, resulting in computationally expensive or conservative
optimization problems.

Another approach to handle joint chance constraints is risk
allocation [9]–[11]. Here, the joint chance constraints are
broken into individual chance constraints using Boole’s in-
equality, and the violation probability threshold is broken into
separate violation probability thresholds for each individual
chance constraints. This converts the optimal control problem
into an optimization problem for both optimal controller syn-
thesis and risk allocation. For a safety probability threshold
above 0.5 (violation probability threshold below 0.5), this
problem is convex for open-loop controller synthesis [10]
and for closed-loop controller synthesis under fixed risk
allocation [9]. However, the individual chance constraints
require enforcing constraints involving the cumulative den-
sity function or its inverse, the quantile function, and these
constraints do not have a known conic reformulation for
implementation in standard solvers [12], [13]. On the other
hand, for a fixed risk allocation, the quantile function-
based reformulation yields linear (for open-loop controller
synthesis [10]) or second-order cone constraints (for closed-
loop linear feedback controller synthesis [9], [11]). Existing
approaches utilize this observation by decoupling the risk



allocation problem from the optimal controller synthesis
problem. The authors in [10], [11] propose iterative ap-
proaches where they tackle the risk allocation problem with
various heuristics, while the authors in [9] use only fixed
risk allocations. Due to the decoupled approach, none of
these approaches can provide guarantees of optimality. Al-
ternatively, researchers have proposed convex restrictions of
chance-constrained optimization problems using conditional
value-at-risk [14], whose implementation is typically done
via sampling-based approximations [15].

We propose two iteration-free approaches in which the
solver allocates the risk as well as synthesizes an open-loop
controller. Our approaches are implementable in standard
solvers and have simple user-defined parameters whose influ-
ence on the solution quality and computation time is explicit.
By approximating nonlinear terms in the optimization prob-
lem as piecewise-affine constraints, we formulate a mixed-
integer convex program without imposing any restrictions
on the safety probability threshold. This formulation builds
on the observation that the risk allocation in conjunction
with optimal controller synthesis produces reverse convex
constraints (constraints whose complement sets are convex).
When the safety probability threshold is above 0.5, we can
use piecewise-affine approximations to formulate a convex
program. We compare the efficacy of our approach to existing
approaches [1], [10] on two stochastic motion planning
problems: a robot with stochastic double integrator dynamics
navigating a constrained environment, and the spacecraft
rendezvous problem.

The main contributions of this paper are: 1) reformulation
of the stochastic optimal control problem with risk allocation
and optimal controller synthesis into an optimization problem
with convex and reverse convex constraints, 2) conservative
approximation (a mixed-integer convex program) of this
reformulation using piecewise affine approximations when
no restrictions are placed on the safety probability threshold,
and 3) conservative and tractable approximation (a convex
program) of the stochastic optimal control problem when
the safety probability threshold is above 0.5. For quadratic
objectives, these problem formulations yield a mixed-integer
quadratic program (MIQP) and a quadratic program (QP)
respectively. We also study the effect of the choice of
piecewise-affine approximation on the optimal controller
synthesis as well as the risk allocation.

II. PRELIMINARIES AND PROBLEM FORMULATION

We denote a discrete-time time interval which inclusively
enumerates all integers between a and b for a, b ∈ N, a ≤ b
by N[a,b], random vectors with bold case, and non-random
vectors with an overline. The indicator function of a non-
empty set E is denoted by 1E(y), such that 1E(y) = 1 if
y ∈ E and is zero otherwise. We define a p-dimensional
identity matrix as Ip, and we denote the Kronecker product
with ⊗. We define the set GN as the Cartesian product of a
set G ⊆ Rn with itself N ∈ N times.

A. Reverse convex constraints

Reverse convex constraints arise when a convex function
of the decision variable must be kept above a threshold. For
example, in obstacle avoidance [1], [3], [11], we require the
distance between a robot and an obstacle (a convex function)
be above a threshold. That is, for some convex function
g : Rn → R, the constraint x ∈ E = {y : g(y) ≥ 0} must
be maintained [16, Sec. 4.3.1]. This constraint is “reverse”
convex because the complement of E , the set Rn \ E = {y :
g(y) < 0}, is convex. For a concave h, the constraint of
the form x ∈ {y : h(y) ≤ 0} results in a reverse convex
constraint. Since E is non-convex, optimization problems in-
volving reverse convex constraints are typically non-convex.

B. Stochastic optimal control problem

We consider a stochastic linear time-varying system

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k) (1)

with state x(k) ∈ Rn, input u(k) ∈ U ⊂ Rm, and
independent but not necessarily identical Gaussian process
w(k) ∈ Rp, w(k) ∼ N (µw(k), Cw(k)) with µw(k) ∈ Rp
and symmetric positive semidefinite Cw(k) ∈ Rp×p for
k ∈ N. We assume the initial state x(0) ∈ Rn is Gaussian,
x(0) ∼ N (µx, Cx), with µx ∈ Rn and symmetric positive
semidefinite Cx ∈ Rn×n. We assume a finite time horizon
N ∈ N, N > 0, w(k) and x(0) to be mutually independent
for k ∈ N[0,N−1], and a convex and compact U .

We define the concatenated state vector, concatenated
(deterministic) input vector, and concatenated disturbance
vector as follows:

X =
[
x(0)

>
. . . x(N)

>
]>
∈ Rn(N+1) (2a)

U =
[
u(0)

>
. . . u(N − 1)

>
]>
∈ UN ⊂ RmN (2b)

W =
[
w(0)

>
. . . w(N − 1)

>
]>
∈ RpN (2c)

For a Gaussian process w(k), we have W ∼ N (µW , CW )

with µW =
[
µw(0)

>
µw(1)

>
. . . µw(N − 1)

>
]>
∈ RpN

and CW = blkdiag(Cw(0), . . . , Cw(N − 1)) ∈ RpN×pN .
From (1) and (2), we have

X = Āx(0) +HU +GW (3)

where the matrices Ā ∈ Rn(N+1)×n, H ∈ Rn(N+1)×mN ,
and G ∈ Rn(N+1)×pN are obtained from the dynamics (1)
(see [17] for their definitions). Recall that affine transforma-
tions of Gaussian random vectors are Gaussian [18, Ch. 3].
For a matrix Γ ∈ Rny×(pN) (ny ∈ N) and vector ν ∈ Rny ,

W ∼ N (µW , CW )
Y =ΓW+ν−−−−−−−→ Y ∼ N (µY , CY ) (4)

with µY = ΓµW +ν ∈ Rny and CY = ΓCW Γ> ∈ Rny×ny .
Thus, for any U ∈ RmN , we have XU ∼ N (µX,U , CX,U ),

µX,U = Āµx +HU +GµW , (5a)

CX,U = ĀCxĀ
> +GCWG>. (5b)



We are interested in solving the following stochastic
optimal control problem,

minimize
U∈UN

EUX
[
J(XU , U)

]
(6a)

subject to PUX {XU ∈ S } ≥ 1−∆ (6b)

with decision variable U ∈ RmN , convex cost function J :
Rn(N+1) × UN → R, a polytopic set of hard constraints on
the input UN ⊂ RmN , a polytopic set S = {X ∈ Rn(N+1) :
PX ≤ q} ⊆ Rn(N+1) in which the state should lie, and a
lower bound on its probability of satisfaction, 1−∆ ∈ (0, 1].
Thus, the constraint (6b) lower bounds the safety probability
PUX {XU ∈ S } associated with the controller U . In defining
S , we have P =

[
p>1 . . . p>LX

]> ∈ RLX×n(N+1) and q =

[q1 . . . qLX
]
> ∈ RLX with LX ∈ N.

As in typical optimal control problems, we consider a
quadratic cost function J(XU , U) = U

>
RU + (XU −

Xd)>Q(XU − Xd) for some symmetric positive semi-
definite matrices Q ∈ Rn(N+1)×n(N+1) and R ∈
R(mN)×(mN) to penalize the control effort and the distance
from some desired trajectory Xd ∈ S . For Gaussian XU (5)
and quadratic cost J(·), (6a) has a closed-form expression
which is quadratic in U [18, Sec. 7.5],

EUX
[
J(XU , U)

]
= U

>
RU + (µX,U −Xd)

>
Q(µX,U −Xd) + tr(QCX,U ).

(7)

Here, tr denotes the trace operator. By (5b), tr(QCX,U )

is independent of the decision variable U . Clearly,
EUX

[
J(XU , U)

]
is convex in U by the positive semi-

definiteness of Q and R, and (5a) [19, Ex. 3.49].

C. Risk allocation approach

Even with a convex quadratic cost (7), the problem (6) is
hard to solve due to the joint chance constraint (6b). Risk
allocation transforms the joint chance constraints (6b) to a
set of individual chance constraints via Boole’s inequality,
posed as linear constraints or second-order cone constraints
using the properties of Gaussian random vectors [4], [9]–
[11]. Specifically, we tighten (6b) to obtain the following set
of tractable constraints,

∆ ≥
∑LX

i=1
δi, δi ≥ 0, ∀i ∈ N[1,LX ] (8a)

Φ

qi − p>i µX,U

‖C
1
2

X,U
pi‖

2

 ≥ 1− δi, ∀i ∈ N[1,LX ] (8b)

with Φ(·) as the standard normal cumulative density function
(CDF). Any controller U ∈ UN that satisfies (8) along with
a risk allocation δ , [δ1 . . . δLX

] ∈ [0, 1]
LX , satisfies (6b).

Using (8), the authors in [9], [10] have proposed the

following restriction of (6),

minimize
U,δ,µX,U

EUX [J(XU , U)] (9a)

subject to ∆ ≥
∑LX

i=1
δi, (5a), U ∈ UN (9b)

δi ≥ 0, ∀i ∈ N[1,LX ] (9c)

p>i µX,U + ‖C
1
2

X,U
pi‖

2
Φ−1 (1− δi) ≤ qi,

∀i ∈ N[1,LX ] (9d)

Recall that Φ−1(·) is a monotone function. The constraint
(9d) is equivalent to the constraint (8b), as it follows from
applying Φ−1(·) to both sides of the inequality (8b), and
rearranging the terms.

For ∆ ≤ 0.5, (9) is a convex restriction [10, Thm. 1].
Since Φ−1(1− δi) does not have a conic reformulation and
(9d) is linear under fixed-risk allocation, the authors in [10]
proposed an iterative approach that solves (9). They solve
simpler convex programs with fixed risk allocation δ, update
the risk allocations, and repeat these steps till convergence.
Here, we propose tractable restrictions of the optimal control
problem (9) such that the solver can handle risk allocation
as well as the optimal controller synthesis simultaneously,
without imposing the requirement that ∆ ≤ 0.5.

D. Problem statements

Problem 1. Obtain a mixed-integer convex program restric-
tion of (9) for any ∆ ∈ [0, 1).

Problem 1a. Show that (9) is equivalent to an optimization
problem with convex and reverse convex constraints, and a
convex objective for any ∆ ∈ [0, 1).

We exploit the structure in the reverse convex constraints
to tractably solve (9) via mixed-integer convex programming.

Problem 1b. Use piecewise-affine approximation and the
“big-M” approach to tighten the reverse convex constraints
using mixed-integer affine constraints.

Problem 2. For ∆ ∈ [0, 0.5), obtain a convex restric-
tion of (9) using a piecewise-affine overapproximation of
Φ−1(1− δi).

III. MIXED-INTEGER CONVEX PROGRAM FOR ∆ ∈ [0, 1)

A. Risk allocation yields reverse convex constraints

Consider the following optimization problem,

minimize
U,δ,s,µX,U

EUX
[
J(XU , U)

]
(10a)

subject to ∆ ≥
∑LX

i=1
δi, (5a), U ∈ UN (10b)

δi ∈ [0,∆], si ∈ [log(1−∆), 0],∀i ∈ N[1,LX ]

(10c)

log Φ

qi − p>i µX,U

‖C
1
2

X,U
pi‖

2

 ≥ si, ∀i ∈ N[1,LX ]

(10d)
log(1− δi) ≤ si, ∀i ∈ N[1,LX ] (10e)



with s = [s1 . . . sLX
] ∈ RLX as a vector of slack variables.

Proposition 1. (10) is equivalent to (9), ∀∆ ∈ [0, 1).

Proof: The cost function (10a) and the constraint (10b)
are identical to (9a) and (9b). We obtain (10d) and (10e)
by reformulating (8b) using log(·) and introducing the slack
variables si to enforce the inequality [19, Sec. 4.1.3]. By (8a),
δi ∈ [0,∆] ∀i ∈ N[1,LX ]. We have si ∈ [log(1−∆), 0] ∀i ∈
N[1,LX ] in (10c) due to the bounds on si enforced by (10d)
and (10e). Recall that log(Φ(y)) ≤ 0 ∀y ∈ R and log(1−y)
is monotone decreasing in y.

Proposition 2. Problem (10) has a convex objective, and
convex and reverse convex constraints.

Proof: The cost (10a) and the constraints (10b) and
(10c) are convex [19, Sec. 3.2]. We know that the standard
normal CDF Φ(y) is log-concave over y ∈ R, and log(1−y)
is concave over y < 1 [19, Ch. 3]. Recall that a function
f : R→ R is log-concave if f(y) ≥ 0 ∀y ∈ R and log(f(y))
is concave with log 0 , −∞ [19, Sec. 3.5.1]. Thus, (10d) is
also convex. However, the constraint (10e) is reverse convex,
since {log(1−δi)−si} is concave in (si, δi) and (10e) defines
the complement of a convex set.

Propositions 1 and 2 solve Problem 1a. Note that the
constraints (10d) and (10e) are not easy to enforce, because
the latter is non-convex and the former, though convex, does
not have a known reformulation into conic constraints. Recall
that standard convex solvers can handle only conic con-
straints [12], [13]. We will propose a tractable restriction of
(10) using piecewise affine approximations and the presence
of reverse convex constraints in (10).

B. Tightening constraints by piecewise-affine approximation

Consider a concave function f(x) : D → R, with
bounded D,R ⊂ R, convex D = [xmin, xmax], and xmin,
xmax ∈ R, xmin < xmax. We use piecewise-affine (PWA)
approximations to tighten constraints of the form f(x) ≥ s
(a convex constraint) and f(x) ≤ s (a reverse convex
constraint) for some s ∈ R.

We construct PWA approximations of f(x) as `+f , `
−
f :

R→ R for some m+
f,j , c

+
f,j ,m

−
f,j , c

−
f,j ∈ R ∀j ∈ N[1,Nf ],

`−f (x) , min
j∈N[1,Nf ]

{m−f,jx+ c−f,j}, (11a)

`+f (x) , min
j∈N[1,Nf ]

{m+
f,jx+ c+f,j} (11b)

such that ∀x ∈ D and a given approximation error η > 0,

f(x)− η ≤ `−f (x) ≤ f(x) ≤ `+f (x) ≤ f(x) + η. (12)

Due to the concavity of f(x), the PWA underapproxima-
tion `−f (x) can be constructed using the secants obtained by
connecting (xi, f(xi)) for a collection of xi ∈ D, and the
PWA overapproximation `+f (x) can be constructed by shift-
ing these secants to define tangents of f(x) [19, Sec. 3.1].
Figure 1 illustrates this approximation using hypographs.
Recall that the hypograph of a function f(x) is the set

Fig. 1. Piecewise-affine approximation of f(x) = −x2 over D = [0, 1]
with hypographs of `−f (x), `+f (x), f(x) shaded.

{(x, s) : f(x) ≥ s} and its epigraph is the set {(x, s) :
f(x) ≤ s} [19, Sec. 3.1.7].

The choice of xi (breakpoints) determines the accuracy of
the PWA approximation. Appendix A discusses an algorithm
(Algorithm 1) to choose these breakpoints based on the user-
provided approximation tolerances. This approach satisfies
(12) using linear Lagrange interpolation [20, Eq. 25.2.1].

By (12), the hypograph of `−f (x) is a subset of the
hypograph of f(x), while the epigraph of `−f (x) is a subset
of the epigraph of f(x),

{(x, s) : `−f (x) ≥ s} ⊆ {(x, s) : f(x) ≥ s}, (13a)

{(x, s) : `+f (x) ≤ s} ⊆ {(x, s) : f(x) ≤ s}. (13b)

By (11), we have

`−f (x) ≥ s⇔ ∀j ∈ N[1,Nf ],m
−
f,jx+ c−f,j ≥ s, (14a)

`+f (x) ≤ s⇔ ∃j ∈ N[1,Nf ],m
+
f,jx+ c+f,j ≤ s. (14b)

By (14a), we can impose the convex constraint of f(x) ≥ s
using a collection of affine constraints. On the other hand,
we can tighten the constraint f(x) ≤ s (a reverse convex
set in (x, s)) by enforcing an optional constraint satisfaction
(14b). We utilize the “big-M” approach [21], a mixed-integer
constraint reformulation to enforce `+f (x) ≤ s. For every
j ∈ N[1,Nf ], we define a binary decision variable ξj ∈ {0, 1},

{m+
f,jx+ c+f,j ≤ s} ⇔ [ξj = 1]. (15)

The bijection in (14b) may be equivalently enforced by the
following (mixed-integer) affine constraints,

m+
f,jx+ c+f,j − s ≤Mub

j (1− ξj), ∀j ∈ N[1,Nf ]

m+
f,jx+ c+f,j − s ≥ ε+ (M lb

j − ε)ξj , ∀j ∈ N[1,Nf ]

ξj ∈ {0, 1}, ∀j ∈ N[1,Nf ]∑Nf

j=1 ξj ≥ 1,

(16)

with ε as a small tolerance (typically the machine precision),
and Mub

j and M lb
j as the (constant) upper and lower bounds

of m+
f,jx + c+f,j − s in the range of values of (x, s). We

compute Mub
j and M lb

j offline. The existence of j ∈ N[1,Nf ]

for optional constraint satisfaction (14b) is enforced by
requiring

∑Nf

j=1 ξj ≥ 1, at least one of the binary decision
variables ξj is 1.

C. Construction of the mixed-integer convex program

We now construct a restriction of the optimization problem
(10), a mixed-integer convex program (17) (see the next
page). In (17), the cost function (17a) and the constraint
(17b) are identical to (10a) and (10b) respectively.

To tighten (10d), we analyze the function h(y) =
log(Φ(y)), y ∈ R. It is easy to check that h(y) is a concave



minimize
U, δ, s, µX,U , ξ

EUX
[
J(XU , U)

]
(17a)

subject to ∆ ≥
∑LX

i=1
δi, µX,U = Āµx +HU +GµW , U ∈ UN , (17b)

δi ∈ [0,∆], si ∈ [log(1−∆),−ηh], ∀i ∈ N[1,LX ], (17c)

m−h,j(qi − p
>
i µX,U ) + c−h,j‖C

1
2

X,U
pi‖

2
≥ si‖C

1
2

X,U
pi‖

2
, ∀i ∈ N[1,LX ],∀j ∈ N[1,Nh], (17d)

qi − p>i µX,U ≥ −K‖C
1
2

X,U
pi‖

2
, ∀i ∈ N[1,LX ], (17e)

m+
g,jδi + c+g,j − si ≤M

ub
j (1− ξij), ∀i ∈ N[1,LX ],∀j ∈ N[1,Ng], (17f)

m+
g,jδi + c+g,j − si ≥ ε+ (M lb

j − ε)ξij , ∀i ∈ N[1,LX ],∀j ∈ N[1,Ng], (17g)

ξij ∈ {0, 1}, ∀i ∈ N[1,LX ],∀j ∈ N[1,Ng], (17h)∑Ng

j=1
ξij ≥ 1, ∀i ∈ N[1,LX ]. (17i)

function with an unbounded domain and range. To construct
a PWA approximation, we restrict the domain of h(y) to
[−K,Φ−1(e−ηh)] for a positive real number K and the user-
specified approximation error bound ηh > 0. The upper
bound is motivated by the fact log(Φ(y)) → 0 as y → ∞,
and for every y ≥ Φ−1(e−ηh), log(Φ(y)) ∈ [−ηh, 0). The
lower bound −K should ensure that Φ(−K) is sufficiently
close to zero. For y ∈ [−K,∞), `−h (y) underapproximates
h(y) within ηh using Nh + 1 affine segments in the domain
[−K,∞),

`−h (y) = min
j∈N[1,Nh]

{m−h,jy + c−h,j ,−ηh} (18)

for an appropriate choice of m−h,j , c
−
h,j . The restriction in

domain of h(y) introduces the constraint (17e), and updates
(10c) to (17c). Using (13a) and (14a), we enforce (10d) in
(17) via (17c), (17d), and (17e).

To tighten the constraint (10e), we analyze the function
g(y) = log(1− y), y ∈ [0,∆]. It is easy to check that g(y)
is also a concave function with a bounded domain [0,∆] and
range [log(1−∆), 0]. Thus, we can construct `+g (y), a PWA
overapproximation to g(y) with an error bound ηg > 0,

`+g (y) , min
j∈N[1,Ng ]

{m+
g,jy + c+g,j}, ∀y ∈ [0,∆]. (19)

We enforce the reverse convex constraint (10e) using
(13b), (15), and (16), and a binary decision vector ξ =
[ξ11 . . . ξ1Ng

ξ21 . . . ξLXNg
]
> ∈ {0, 1}LXNg , to obtain

the constraints (17f), (17g), (17h), and (17i). Note that
g(y) − s is monotone decreasing in y and s. From (17c),
the lower and upper bounds on g(y)− s for (16) are

M lb
j = c+g,j +m+

g,j∆ + ηh ∀j ∈ N[1,Ng ], (20a)

Mub
j = c+g,j − log(1−∆) ∀j ∈ N[1,Ng ]. (20b)

Proposition 3. For any ∆ ∈ [0, 1), (17) is a mixed-integer
convex restriction of (9).

Proof: Follows from Proposition 1, (13), and the fact
that (17a) is convex and all constraints of (17) are affine.

Proposition 3 solves Problem 1b, and thereby Problem 1.
Every feasible solution of (17) is feasible for (10) and (9).

Remark 1. For a quadratic cost (7), (17) is a MIQP.

D. Effect of user-defined parameters

In (17), there are three user-defined parameters required
to construct `+g (y), `−h (y): maximum approximation errors
ηg, ηh > 0 and the domain restriction K for h(y). Using a
small value of ηg, ηh and/or large values of K makes (17)
a closer representation of (10). This, however, increases the
number of affine segments in the PWA approximation, which
in turn increases the computation cost due to a increase in
the number of constraints (larger Ng, Nh) and more binary
variables (in case of `+g (y)). On the other hand, a larger value
of ηg, ηh and/or reducing K results in a fewer constraints
and improves the computation time at the cost of additional
conservativeness. Thus, we obtain a tradeoff between the
computation time and accuracy (conservativeness) by the
choice of K, ηh, and ηg .

In summary, given a stochastic optimal control problem
(9), we exploited the log-concavity of the CDF to propose
an equivalent reformulation in (10). Next, we enforced the
nonlinear (convex and reverse convex) constraints using their
PWA approximations to obtain the mixed-integer convex pro-
gram (17). Finally, we showed that (17) enables a tractable
solution to (9). We recommend the use of Algorithm 1 in
Appendix A to construct the PWA approximations up to a
user-specified tolerance.

IV. CONVEX PROGRAM FOR ∆ ≤ 0.5

Recall that (9) is convex under the restriction of ∆ ≤ 0.5.
Since the constraint (9d) cannot be reformulated into a conic
constraint, we use the PWA overapproximation of the convex
function f(y) = Φ−1(1− y), y ∈ [0,∆],

`+f (y) , max
j∈N[1,Nf ]

{m+
f,jy + c+f,j}, y ∈ [δlb,∆]. (21)

We restrict the domain of f(y) to y ∈ [δlb, 0.5] for a small
δlb ∈ R, δlb > 0 since Φ−1(1 − y) → ∞ as y → 0+.



Stochastic optimal
control problem (6)

Risk allocation
problem (9)

Optimization problem
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∆
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Log-concavity
of Φ(·) (Prop. 1)

Fig. 2. Relationship between various optimization problems presented
in this paper. While (9) and (10) are equivalent, all other relations are
restrictions (one-directional relationships). For a quadratic cost (7), (17)
and (22) are mixed-integer quadratic and quadratic programs respectively.

To use Algorithm 1 of Appendix A, we compute the PWA
underapproximation of −f(y) (a concave function).

Using (21) and (13a), we have the following problem,

minimize
U,δ,µX,U

EUX
[
J(XU , U)

]
(22a)

subject to ∆ ≥
∑LX

i=1
δi, (5a), U ∈ UN , (22b)

δi ∈ [δlb,∆], ∀i ∈ N[1,LX ] (22c)

p>i µX,U + ‖C
1
2

X,U
pi‖

2

(
m+
f,jδi + c+f,j

)
≤ qi,

∀i ∈ N[1,LX ],∀j ∈ N[1,Nf ] (22d)

Proposition 4. Problem (22) is a convex restriction of (9)
when ∆ ∈ [0, 0.5].

Proof: While (22a) and (22b) are identical to (9a)
and (9b), (22c) and (22d) are restrictions of (9c) and (9d)
respectively. We complete the proof by noting that (22)
minimizes a convex cost over affine constraints.

Remark 2. For a quadratic cost (7), (22) is a QP.

Proposition 4 solves Problem 2. By construction, the convex
solver allocates the risk and synthesizes an optimal con-
troller in a single optimization problem (22). In contrast,
the iterative risk allocation decouples the risk allocation and
controller synthesis problem, and solves the optimal control
problem in an iterative manner [10]. By Proposition 4, every
feasible solution of (22) is feasible for (9).

This approach requires two user-defined parameters, δlb
and ηf . Similarly to Section III-D, large δlb and/or large ηf
will reduce the number of affine segments, which improves
the computation time but with additional conservativeness.
We choose δlb � ∆/LX to ensure that the solution to (22)
is not solely determined by (22b) and (22c).

Figure 2 summarizes the relationships between the opti-
mization problems introduced in this paper.

V. NUMERICAL STUDY

We implement our proposed solutions on two stochastic
motion planning problems with quadratic cost objectives (7).
We compare the QP to solve (22) with the iterative risk
allocation approach (IRA) in [10] when 1 − ∆ ≥ 0.5, and

Fig. 3. Double integrator example with safety probability threshold 1−∆ =
0.8 (top plot) and 1−∆ = 0.4 (bottom plot).

compare the MIQP to solve (17) with the particle control
approach (PC) in [1] for arbitrary 1 − ∆ ∈ (0, 1]. For
the implementation of the PWA approximations, we chose
ηg = ηh = 5 × 10−4 and K = 5 for (17), ηf = 10−2

and δlb = 10−5 for (22). We also perform a Monte-Carlo
simulation-based validation of the optimal controllers using
105 particles. Lastly, we compare the relative absolute error
in the simulated cost with the expected cost, and evaluate
the simulated safety probability against the prescribed safety
probability threshold. Since PC produces different controllers
under each run, we report the average results from three
executions of the method. The proposed MIQP approach
is sampling-free and provides consistent results, a clear
advantage over the PC method.

All computations were done using MATLAB on an Intel
Xeon CPU with 3.80GHz clock rate and 32 GB RAM. We
used CVX [12] with Gurobi [13] as the underlying solver to
solve (17) and (22) and to implement IRA [10] and PC [1].
We used MPT [22] and SReachTools [23] for the stochastic
optimal control problem formulation.

A. Double integrator example

We consider a double integrator system,

x(k + 1) =

[
1 Ts
0 1

]
x(k) +

[
T 2
s

2
Ts

]
u(k) + w(k) (23)

with state x(k) ∈ R2, input set U = [−1, 1], Gaussian
disturbance w(k) with mean µw(k) = [0 0]

> and covariance
matrix Cw(k) = 10−4I2, sampling time Ts = 0.25s, and
initial position x(0) ∼ N ([0.4 0]

>
, Cx). For a time horizon

of N ∈ N, the polytopic safe set S is obtained by projecting
T , a time-varying target tube that imposes constraints on the
position, to RnN+1, to generate constraints on XU ,

T =
{

(t, x) ∈ N[0,N ] × R2 : m1t+ c1 ≤ x1 ≤ m2t+ c2
}
.

We use a quadratic cost (7) to track Xd ∈ RnN+1, penalize
high velocities, and minimize control effort. We choose Q =
diag([10 1]) ⊗ I(N+1)×(N+1), R = 10−3IN×N , (Xd)t =

[mrt+ cr 0]
>
, ∀t ∈ N[0,N ], and set m1,m2,mr, c1, c2, cr

as 0.15,−0.15, 0.3,−0.5, 0.5,−0.4 respectively.
1) Fixed time horizon (N = 10 time steps): We analyze

the stochastic motion planning problem (6) with safety
probability threshold 1 − ∆ ∈ {0.4, 0.8} and Cx ∈



Example Double integrator example (Section V-A, Figure 3) Spacecraft rendezvous example (Section V-B, Figure 5)
Safety probability
threshold 1−∆ = 0.8 1−∆ = 0.4 1−∆ = 0.8 1−∆ = 0.4

Approach QP (22) IRA [10] MIQP (17) PC [1] MIQP (17) PC [1] QP (22) IRA [10] MIQP (17) PC [1] MIQP (17) PC [1]
Solve time (s) 0.05 0.38 0.39 13.64 0.83 10.59 0.06 1.32 0.23 14.13 2.09 86.19
Relative absolute er-
ror between the sim-
ulated and expected
costs (×10−3)

9.88 9.95 10.11 30.31 94.43 64.98 5.85 5.73 5.93 4.19 6.18 7.74

Safety probability 0.85 0.85 0.84 0.84 0.71 0.60 0.81 0.80 0.83 0.78 0.58 0.39

TABLE I: Comparison of solutions to (9). We propose a quadratic program (QP) to solve (22) for 1−∆ ≥ 0.5 and a mixed-integer quadratic program
(MIQP) to solve (17), and compare them to iterative risk allocation (IRA) [10] and particle control (PC) [1] (100 particles), respectively. A Monte-Carlo
simulation (105 particles) validates performance and safety probability obtained using each controller.

Fig. 4. Solve times for various approaches in the double integrator example

{10−3I2, 10−4I2} respectively. Figure 3 shows that trajec-
tories produced by all the methods are very similar. Table I
tabulates the computation time and Monte-Carlo simulation-
based validation of the optimal controllers. All methods
reproduce acceptable relative absolute error between the
simulated and the expected cost, and the simulated safety
probability under Monte-Carlo simulation. The solve time
of our algorithms are faster than their counterparts: the QP
in (22) is faster than IRA, and the solve time for MIQP (17)
is faster than PC. We used 100 particles for the PC approach.

2) Different time horizons N ∈ N[10,60]: We next analyze
how the computation time scales with time horizon N for the
double integrator example with safety probability threshold
1 − ∆ = 0.8 and Cx = 10−4I2. Figure 4 shows that, due
to the non-iterative nature, the QP scales significantly better
than the IRA [10]. Since PC [1] and MIQP are mixed-integer
formulations, their solve time increases exponentially with
N . However, our MIQP scales better, potentially due to the
structure afforded by (17). For reasonable computation times,
we used only 50 particles for the PC approach.

B. Spacecraft rendezvous example

We consider two spacecraft in the same elliptical orbit.
One spacecraft, referred to as the deputy, must approach and
dock with another spacecraft, referred to as the chief, while
remaining in a line-of-sight cone, in which accurate sensing
of the other vehicle is possible. The relative dynamics are
described by the Clohessy-Wiltshire-Hill (CWH) equations
[24] with additive stochastic noise,

ẍ− 3ωx− 2ωẏ = m−1
d Fx, ÿ + 2ωẋ = m−1

d Fy. (24)

The chief is located at the origin, the position of the deputy
is x, y ∈ R, ω =

√
µ/R3

0 is the orbital frequency, µ is the
gravitational constant, and R0 is the orbital radius of the
spacecraft. See [2] for further details and numerical values.

We define the state as z = [x, y, ẋ, ẏ] ∈ R4 and the
input as u = [Fx, Fy] ∈ U ⊂ R2. We discretize (24) to

Fig. 5. Spacecraft rendezvous problem with safety probability threshold
1−∆ = 0.8 (top plot) and 1−∆ = 0.4 (bottom plot). The insets display
the trajectory with the entire safe set.

obtain a LTI system z(k + 1) = Azk + Bu(k) + w(k)
with input space U = [−0.1, 0.1]2, and Gaussian disturbance
w(k) ∈ R4 with mean µw(k) = [0 0]

> and covariance
matrix Cw(k) = 10−4 × diag(1, 1, 5× 10−4, 5× 10−4). We
define the target set and the constraint set as in [2]

T =
{
z ∈ R4 : |z1| ≤ 0.1,−0.1 ≤ z2 ≤ 0,

|z3| ≤ 0.01, |z4| ≤ 0.01} (25)

K =
{
z ∈ R4 : |z1| ≤ z2, |z3| ≤ 0.05, |z4| ≤ 0.05

}
(26)

with a horizon of N = 5. Thus, S = K4 × T . To drive
the spacecraft to origin, we use a quadratic cost (7) with
Q = diag([10 1 10 1]) ⊗ I6×6, R = 10−3I10×10, and ∀t ∈
N[0,N ], Xd = [0 0 0 0]

>. We presume a safety probability
threshold 1−∆ ∈ {0.4, 0.8} and deterministic initial states
µx ∈ {[−1 − 1 0 0]

>
, [−1.15 − 1.15 0 0]

>} (Cx = 0).
Figure 5 shows the optimal trajectory taken by each of the

methods. Table I tabulates the computation time and Monte-
Carlo simulation-based validation of the optimal controllers.
Similarly to Section V-A, the solve time of our algorithms
is faster than their counterparts: the QP in (22) is faster
than IRA, and the solve time for MIQP (17) is faster
than PC. Note that the simulated relative absolute error
between the simulated and the expected cost, and simulated
safety probability, are within acceptable ranges. We used 100
particles for the PC approach.

VI. CONCLUSION AND FUTURE WORK

This paper utilizes risk allocation and piecewise affine
approximations in two conservative solutions to a stochastic
optimal control problem with Gaussian-perturbed linear dy-
namics, soft polytopic state constraints, hard polytopic input



constraints, and a convex cost function. When the safety
probability threshold is above 0.5, we propose a convex
program to solve the optimal control problem in a non-
iterative manner. For the general problem, we propose a
mixed-integer convex program that is free from sampling.
For a quadratic cost function, these approaches simplify to a
quadratic and mixed-integer quadratic program, respectively.
Using two examples, we demonstrate that the proposed
approaches outperform existing iterative risk allocation [10]
and the particle control [1] approaches in computation time,
without compromising on the solution quality.

APPENDIX

A. Piecewise-affine approximations for concave functions

We show that, given a concave function f : D → R where
D,R are bounded intervals in R and f has a well-defined
gradient and hessian, Algorithm 1 computes its PWA under-
and overapproximation (11) that satisfies (12).

Algorithm 1 Piecewise-affine (PWA) approximations `+f , `
−
f

Input: Concave f : D → R with gradient ∇f(x) and
hessian ∇2f(x), bounded sets D = [xmin, xmax],R ⊂
R, maximum approximation error η > 0

Output: PWA over- ( `+f ) and underapproximation (`−f )
1: xj ← xmin and j ← 1
2: while xj < xmax do

3: Solve h2

(
min

x∈[xj ,xj+h]
∇2f(x)

)
+ 8η = 0 for h

4: h← min(h, xmax − xj), xj+1 ← xj + h
5: //Construction of PWA underapproximation (`−f )
6: m−f,j ←

f(xj+1)−f(xj)
h , c−f,j ←

f(xj+1)xj−(xj+1)f(xj)
h

7: //Construction of PWA overapproximation (`+f )
8: Solve ∇f(yj) = m−f,j for yj ∈ [xj , xj+1]

9: m+
f,j ← ∇f(yj), c

+
f,j ← f(yj)−∇f(yj)yj

10: Increment j by 1
11: end while
12: Nf ← j and Nf ← j − 1
13: `+f (y)← minj∈N[1,Nf ]

{m+
f,jx+ c+f,j}

14: `−f (y)← minj∈N[1,Nf ]
{m−f,jx+ c−f,j}

Recall that for linear Lagrange interpolation, the approxi-
mation error in the interval [xj , xj + h] for any xj ∈ D and

h > 0 is bounded from above by
h2 minx∈[xj,xj+h]∇2f(x)

8 [20,
Eq. 25.2.1]. Since f(x) is concave, ∇2f(x) is non-positive,
and the line joining (xj , f(xj) and (xj + h, f(xj + h))
underapproximates f(x) in the interval [xj , xj +h] [19, Sec.
3.1]. Thus, line 3 of Algorithm 1 computes the interval gap
h by ensuring that the underapproximation error is below η.
However, solving line 3 is hard without imposing additional
structure on f(x). For f(x) with monotone ∇2f(x) in the
interval [xj , xj + h],

min
x∈[xj ,xj+h]

∇2f(x) =

{
∇2f(xj), nondecreasing ∇2f(x)

∇2f(xj + h), nonincreasing ∇2f(x)

For these cases, line 3 simplifies to a problem of finding the
root of the equation h2(∇2f(xj))+8η = 0 or h2(∇2f(xj +
h)) + 8η = 0 respectively. The nonlinear functions of
interest in this paper, Φ−1(1−x), log Φ(x), and log(1−x),
have monotone second derivatives, which permit an efficient
implementation of Algorithm 1.

Remark 3. Algorithm 1 can be easily adapted for convex
functions as negations of convex functions are concave.
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